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Abstract 

Purpose: The biarticular rectus femoris (RF), operating on the ascending limb of the force-

length curve, produces more force at longer lengths. However, experimental studies 

consistently report higher knee extension torque when supine (longer RF length) compared to 

seated (shorter RF length). Incomplete activation in the supine position has been proposed as 

the reason for this discrepancy, but differences in antagonistic co-activation could also be 

responsible due to altered hamstrings length. We examined the role of agonist and antagonist 

muscles in explaining the isometric knee extension torque variation with changes in hip joint 

angle.  

Method: Maximum voluntary isometric knee extension torque (joint MVC) was recorded in 

seated and supine positions from nine healthy males (30.2±7.7 years). Antagonistic torque 

was estimated using EMG and added to the respective joint MVC (corrected MVC). 

Submaximal tetanic stimulation quadriceps torque was also recorded.  

Result: Joint MVC was not different between supine (245±71.8 Nm) and seated (241±69.8 

Nm) positions and neither was corrected MVC (257±77.7 Nm and 267±87.0 Nm, 

respectively). Antagonistic torque was higher when seated (26±20.4 Nm) than when supine 

(12±7.4 Nm). Tetanic torque was higher when supine (111±31.9 Nm) than when seated 

(99±27.5 Nm).  

Conclusion: Antagonistic co-activation differences between hip position do not account for 

the reduced MVC in the supine position. Rather, a reduced voluntary knee extensor muscle 

activation in that position is the major reason for the lower MVC torque when RF is 

lengthened (hip extended). These findings can assist standardising muscle function 

assessment and improving musculoskeletal modelling applications.  

Keywords: electrical muscle stimulation, muscle activation capacity, quadriceps function, 

seated torque, supine torque 
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Introduction 

Isometric knee extensor muscle torque changes with hip joint angle (e.g. Maffiuletti and 

Lepers 2003; Rochette et al. 2003). This is because hip joint angle impacts on the length of 

the biarticular rectus femoris muscle, which has been estimated to contribute up to ~17% to 

the quadriceps torque output (McNair et al. 1991). However, a marked disparity exists 

between the expected knee extensor torque at different hip joint angles based on the force-

length characteristics of the rectus femoris muscles and actual measurements. Specifically, as 

the rectus femoris operates on the ascending limb of the force-length curve (Herzog and ter 

Keurs 1988), a higher muscle force would be expected by the rectus femoris (and the 

quadriceps group as a whole, since the vastii muscles are crossing the knee joint only) when 

the muscle is lengthened, which corresponds to more extended hip joint angles. In contrast, 

experimental studies consistently show a lower knee extension torque values as the hip joint 

angle is extended (e.g. Maffiuletti and Lepers 2003; Rochette et al. 2003).  

One possible reason for this unexpected effect might be an altered rectus femoris muscle 

activation at different muscle lengths (Herzog et al. 1991). This notion was supported by 

Maffiuletti and Lepers (2003), who used femoral nerve stimulation and found a significant 

4.2% increase in in quadriceps activation when the tests were performed in the seated 

position (shortened rectus femoris) compared to supine (lengthened rectus femoris).  

A second, and currently unexplored, possibility is that the lower knee extension torque when 

the hip is extended compared to flexed could be linked with differences in antagonistic 

muscle co-activation between hip joint angles.  Joint torque generated during knee extension 

is the ‘net’ sum of agonistic muscles positive moment and the antagonistic knee flexor 

muscles negative moment (Kellis and Baltzopoulos, 1999). A change in hip joint angle will 

result not only change the rectus femoris length, but also the hamstrings length. In isometric 

knee extension experiments, where the hip joint angle was kept constant and the hamstrings 
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length was manipulated by changing the knee joint angle, hamstrings co-activation increased 

at more knee flexed positions (i.e. shorter hamstring muscle-tendon unit length) (Kubo et al. 

2004). Based on these results, shorter hamstrings muscle-tendon unit length, caused by 

extending the hip (rather than flexing the knee), could also increase co-activation of the 

hamstrings, subsequently increasing antagonistic torque and ultimately affecting the 

measured net isometric knee extension torque. Indeed, in experiments involving the ankle 

joint angle, antagonistic activity was shown to significantly affect the measured agonist 

torque (Billot et al., 2011; Maganaris et al., 1998), consequently impacting on the torque-

angle relationship.    

To examine whether antagonistic co-activation contributes to the knee torque variation with 

hip joint angle we designed a novel study with the aim of quantifying and comparing agonist 

activation and antagonistic co-activation in the seated and supine positions. We utilised 

electrical stimulation of the quadriceps muscle to allow examination of muscle function 

bypassing the subject’s voluntary neural input, and thus exploring the muscle-tendon 

mechanical behaviour independently to voluntary neural activation. We hypothesised that 

during isometric knee extension an increased hamstring co-activation would be found in the 

supine position, thus partly contributing to the reduced measured knee extension torque 

compared to the seated position. 

 

Materials and Methods 

Subjects 

The study complied with the Declaration of Helsinki and the study and the procedures 

followed were approved by the Institutional Ethics Committee. Nine healthy, active males 

(age 30.2 ± 7.7 years, stature 1.78 ± 0.09 m, body mass 81.7 ± 11.2 kg) free from any 

musculoskeletal injuries gave written, informed consent to participate in the study. In order to 
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reduce variability in performance, all subjects were familiar with the experimental procedures 

(Button and Behm 2008) and all testing took place on a single testing session.  

Isometric knee extension torque measurements 

The subjects were tested in two positions, seated (hip joint angle = 90°), and supine (hip joint 

angle 160°) (full hip joint extension = 180°), with the knee and ankle joint angles at 90° for 

both conditions. A custom-made dynamometer, sampling at 200Hz, was used for the study. 

The dynamometer was specifically developed for assessing isometric contractions and as 

such, the lever arm and the bed had very limited compliance while the restraints allowed for a 

better fixation of the pelvis and the body during the supine position. For the seated position, 

the subject sat in the chair of the dynamometer and straps were positioned over the pelvis and 

tested thigh, to prevent extraneous movement, while the lower leg was securely strapped, 

above the lateral malleolus, to a force-transducer (KAP, E/200 Hz, Bienfait B.V. Haarlem, 

The Netherlands). For the supine position, the subject lay in the chair of the dynamometer 

and the lower leg was securely strapped to the force-transducer above the lateral malleolus 

while straps were positioned over the pelvis and tested thigh.  Pilot testing indicated 

extraneous movement occurred with the upper body moving upwards along the 

dynamometer’s backrest. Hence, to prevent this movement, mechanical blocks were fixed 

securely in place in contact with the shoulders, which held the body in position without 

allowing any upwards movement (Figure 1).  

 

FIGURE 1 ABOUT HERE 

 

Subsequent testing confirmed that this set-up kept extraneous movement to an absolute 

minimum and was superior compared to our experience with other commercially available 

isokinetic dynamometers. 
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With the subjects sat in the dynamometer and their leg relaxed, the force trace was zeroed 

removing any passive force due to passive tension of the muscle-tendon unit of the knee 

extensors, and real-time, unfiltered force readings were displayed online (Matlab, The 

Mathworks, Natick, MA) and recorded for further analysis. For both positions, the 

mechanical output of the isometric knee extension was measured as the force applied 

externally in the sagittal plane at the level of the ankle (at right angles to the longitudinal axis 

of the lower leg), and converted to torque by multiplying that force by the external moment 

arm length, which was defined as the distance between the point of the external force 

application and the knee joint centre.  

Tetanic electrical stimulation 

Two 7 x 12.5-cm self-adhesive carbon rubber electrodes (Versa-Stim, ConMed, New York, 

USA) were placed on the proximal and distal regions of the quadriceps muscle group with the 

cathode being the proximal electrode. Stimuli of 200-μs pulse width and 10-ms inter-stimulus 

gap were generated by an electrical stimulator (model DS7, Digitimer stimulator, Welwyn, 

Garden City, UK) and applied for a duration of 1s. Electrical stimuli application was 

displayed online along with the force signal. Percutaneous stimulation was selected over 

nerve stimulation, as the outcome between the two is comparable (Rutherford et al. 1986) and 

it reduces the discomfort induced to the subjects (Delitto et al. 1992).  

Procedures 

To obtain a baseline of each subject’s strength, two isometric knee extension maximum 

voluntary contractions (with torque obtained as described above; joint MVC) (Figure 2A) 

were performed and averaged. If the coefficient of variation (calculated as standard deviation 

/ average * 100) between the two joint MVC’s was >5%, a third trial was performed and the 

closest two were averaged. Subjects were given standardised verbal encouragement to 

motivate them to exert maximum effort. 
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Supramaximal electrical stimulation intensity was examined in both positions to confirm that 

the same level of stimulation intensity could activate the muscles to respectively similar 

(maximal) levels with the rectus femoris lengthened and shortened. Each subject’s 

supramaximal stimulation intensity was determined by the application at rest of single 

twitches of 200-μs duration, with the voltage set at 300 V and the current intensity increasing 

by 50 mA for each twitch application. The stimulation intensity that did not elicit any further 

increase in force output, despite an increase in current by 50 mA, was determined as 

supramaximal stimulation intensity and subsequently used. For eight subjects, the 

supramaximal intensity was identical between seated and supine positions, while for one 

subject the seated position required one additional increment of 50 mA and that was used as 

the supramaximal intensity for that subject in that position.  

Following confirmation of the supramaximal stimulation intensity in both positions, a tetanus 

of 100Hz, duration of 1 s and of intensity sufficient to yield a force equivalent to one third of 

the respective MVC (Bampouras et al. 2012) was delivered to the muscle at rest (Figure 2B), 

to effectively ‘standardise’ the muscle’s force output in the absence of any voluntary neural 

input and examine the true influence of rectus femoris muscle length changes on knee 

extensor torque output. Submaximal stimulation intensity was used, as it would not affect the 

outcome while it would reduce the subjects’ discomfort (Bampouras et al. 2012), enabling a 

valid comparison of the knee extensor muscle group capability between the two conditions.  

For electromyography (EMG) measurements, two surface Ag-AgCl electrodes of 10mm 

diameter each, were placed on the long head of the biceps femoris (BF) muscle. The 

electrodes were placed in a bipolar configuration and with a centre-to-centre distance of 

20mm, preceded by shaving and cleansing of the placement area.  EMG signal was collected 

at a sampling rate of 1000Hz, and filtered with a high- and low-pass filter of 10 and 500Hz, 
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respectively.  The signal was subsequently smoothed using root mean square over 30ms and a 

mean value from a 500ms window was taken during the plateau phase of the contraction. 

Antagonistic BF muscle torque was estimated with the use of EMG (Beltman et al. 2003; 

Kubo et al. 2004; Maganaris et al. 1998; Reeves et al. 2004), based on the BF muscle 

activation when acting as an agonist. Subjects performed one maximal and three  submaximal 

(at 20%, 40% and 60% of maximal effort) isometric knee flexions, with BF muscle torque 

and EMG synchronously recorded. Torque was plotted against the EMG signal and a line was 

fitted through these four data points to provide a regression equation; a minimum coefficient 

of determination value of 0.9 was set as the fit acceptance criterion (Figure 3).  BF EMG was 

recorded during joint MVC and using the regression equation obtained, the torque 

contribution from the co-activation of the knee flexor muscles was estimated from the EMG 

activity. This antagonistic torque was then added to the measured knee extension MVC 

torque to obtain the ‘corrected MVC’. This method has been reported to provide a reasonable 

estimation of antagonistic torque, even if it underestimates the true antagonistic torque 

(Simoneau et al. 2012). Finally, the mechanical ratio (torque achieved when the muscle acted 

as antagonist normalized to the maximal torque achieved when the muscle acted as agonist) 

was calculated to evaluate the level of coactivation (Billot et al. 2011).  

 

FIGURE 2A ABOUT HERE 

FIGURE 2B ABOUT HERE 

FIGURE 3 ABOUT HERE 

 

The above procedures were followed for both hip joint positions. Subjects were given at least 

two minutes rest between any contractions (joint MVC, tetanic, or knee flexion). All 
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measurements took place on the right leg. The initial MVCs were always performed in the 

seated position, but the order of the rest of the procedures was randomised.   

Statistical analysis 

Normality of distribution of the data was checked for and subsequently confirmed using 

Shapiro-Wilk test, while Grubb’s test indicated no outliers were present in any data set. 

Differences between the two positions for all variables were examined using a dependent 

Student’s t-test. Effect size (ES) was calculated for significantly different comparisons to 

provide an indication of the magnitude of the effect, with 0.8, 0.5 and 0.2 representing  large, 

moderate and small effects (Fritz et al. 2012). For all statistical analysis IBM SPSS Statistics 

v19 was used. Data are presented as means ± SD. Statistical significance level was set at p < 

0.05.  

 

Results 

The results showed that knee extension joint MVC was not significantly different between 

seated (shortened rectus femoris muscle) and supine (lengthened rectus femoris muscle) 

positions, while tetanic stimulation followed modelling predictions, with supine joint MVC 

torque being higher than seated (p = 0.001). The antagonistic torque was significantly 

different (p = 0.025) between positions, however, in a direction contrary to our hypothesis, as 

the seated position yielded higher antagonistic torque. The mechanical ratio between 

positions was not significantly different. Further, when the antagonistic torque was accounted 

for, the corrected MVC still did not follow the same pattern as the tetanic stimulation, as 

there was no difference between the two positions, suggesting that antagonistic muscle co-

activation was not responsible for the observed experimental results.  

Mean supramaximal stimulation intensity was identical between seated and supine positions 

(512 ± 124.6 mA for both positions), suggesting similar portion of the muscle was activated. 
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Descriptive statistics for joint MVC, tetanic torque, antagonistic and corrected MVC torque 

can be seen in Table 1.  

 

TABLE 1 ABOUT HERE 
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Discussion 

The aim of the present study was to determine whether antagonistic co-contraction 

contributes to the unexpected, yet documented, decrease in isometric knee extension torque 

when the hip joint is extended compared to when the hip is flexed,  in contrast to the rectus 

femoris force-length characteristics. We have used a unique approach by combining 

voluntary and electrical stimulation of the quadriceps muscle to investigate the mechanisms 

of the muscle-tendon when investigated for the mechanical behaviour alone (muscle 

electrically stimulated) and when the neural and mechanical behaviour was investigate 

together (joint MVC). The results suggest that differences in antagonistic knee flexor co-

activation with hip joint angle do not contribute to the variation in MVC torque..Rather, a 

reduced voluntary knee extensor muscle activation in the supine position is the major reason 

for the lower MVC torque when the rectus femoris is in a lengthened position (hip extended), 

despite this muscle operating on the ascending arm of the force-length relationship (Herzog 

and ter Keurs 1988).  

Contrary to our hypothesis that the antagonist muscles would co-contract more in the supine 

position to stabilise the pelvis, antagonistic co-activation torque was higher at longer biceps 

femoris muscle lengths (seated position). Further, despite the significant difference in 

antagonistic co-activation torque between the two positions, corrected MVC (i.e. with the 

antagonistic torque accounted for) was not significantly different between positions. The 

most likely explanation for the reduced antagonistic co-activation in the supine position lies 

in the common drive hypothesis (Basmajian and De Luca 1981). The agonist quadriceps and 

antagonist hamstrings have a common central motor drive, meaning that quadriceps 

activation and hamstrings co-activation will change concurrently. As the quadriceps muscle 

demonstrated lower activation in the supine position, antagonistic co-activation would also 

have to be lower, which concurs with our findings.  
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The tetanic stimulation results confirm biomechanical models predicting higher isometric 

knee extension torque in the supine (lengthened rectus femoris) position compared to the 

seated (shorter rectus femoris muscle) position (Herzog and ter Keurs 1988; Herzog et al. 

1990; Hoy et al. 1990; Lewis et al. 2009). As the rectus femoris muscle operates on the 

ascending limb of the force-length curve, elongating it would force it to operate closer to or 

on the plateau region, generating higher forces and consequently, so do the quadriceps 

muscle.  

Previous experimental studies reported higher MVC torque at the seated position (Maffiuletti 

and Lepers 2003; Rochette et al. 2003). These studies utilised maximum voluntary 

contractions and the MVC output reflected both the mechanical behaviour and voluntary 

activation capacity of the agonist muscles, but also the level of antagonist muscle co-

contraction. Maffiuletti and Lepers (2003) reported higher isometric MVC quadriceps torque 

by approximately 10%, with a respective increase in activation of 4.2% in the seated position 

compared to supine, suggesting that increased agonist activation levels at that position 

resulted in the increased torque. The joint MVC results agree with the direction of change of 

previous experimental studies (e.g. Maffiuletti and Lepers 2003; Rochette et al. 2003), while 

the tetanic stimulation results agree with theoretical predictions (Herzog and ter Keurs 1988; 

Hoy et al. 1990; Lewis et al. 2009). When the subjects contracted their knee extensors 

voluntarily, the difference that existed between hip joint positions during tetanic stimulation 

disappeared, suggesting higher activation in the seated position.  

Surprisingly, the extended hip joint position, which corresponded to the lower antagonistic 

co-activation, was also the position with the lower agonist activation.  It seems, therefore, that 

the reduction in agonist activation in the supine position is independent of reciprocal 

inhibition mechanisms (Tyler and Hutton 1989), possibly due to inadequate pelvic fixation. 

Studies typically stabilise the subject by straps placed over shoulders and / or abdomen, to 
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prevent extraneous movement (Hart et al. 1984; Magnusson et al. 1993). These experimental 

set-ups, however, are unlikely to ensure adequate pelvis stabilisation in the supine position, 

where the direction of force applied pushes the body in a different direction to the one the 

straps are counteracting and can negatively impact on the subject’s ability to exert maximal 

volitional effort (Hart et al. 1984; Magnusson et al. 1993). With reduced volitional effort, 

there would be a concurrent reduction in both agonist and antagonist muscle activation in line 

with the common drive hypothesis described above. 

One other possible reason for the difference in agonist muscle activation between the two hip 

joint positions could be differences in vestibular feedback. Lewek et al. (2006) examined the 

effect of hip (afferent feedback) and head (vestibular feedback) position on quadriceps EMG 

during an isometric knee extension MVC, by altering the hip joint angle on its own as well as 

in combination with the head orientation. When the head position followed the hip position 

(head in alignment with upper body), there was significantly higher quadriceps EMG activity 

in seated position compared to supine. This pattern was not seen when the head orientation 

(vertical to the horizontal) was maintained the same for all hip positions, suggesting that 

vestibular, and not afferent input, was the prime reason for the change in EMG activity 

between positions (Lewek et al. 2006). In our study, the subjects maintained their head in 

alignment to the body (Figure 1) in both positions, which is likely to have resulted in reduced 

quadriceps activation in the supine position.  

One methodological consideration with our study is the use of percutaneous stimulation. The 

electrode fixed placement over the muscle belly presents a possible limitation in that moving 

from the seated to the supine position, a different portion of the rectus femoris muscle may 

have been stimulated, which could have affected the results (Newman et al. 2003). However, 

the size of the electrodes we used was large, selected because of increased comfort and for 

enabling stronger contraction (Alon 1985), and, importantly, covered a wide quadriceps area. 
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Thus, it is unlikely that a significantly different portion of the rectus femoris would have been 

stimulated. Another issue with percutaneous stimulation is possible current overflow, which 

could induce antagonistic co-contraction (Alon et al. 1994). However, the overflow should be 

of sufficient level to increase activation of the muscle by at least 5% before any effect on 

torque takes place (De Serres and Enoka 1998). Given that during joint MVC antagonistic co-

contraction was ~5-10% of the agonistic torque, any antagonistic co-contraction induced by 

current overflow would have been even less (as a percentage of the tetanic stimulation 

torque) and thus, of negligible impact on the outcome.   

It has also been reported that subject variability in the operating range of the rectus femoris 

varies in healthy but untrained individuals (Winter and Challis 2010). From 28 subjects used 

in that study, 14 operated on the ascending limb of the force-length curve, 7 over the plateau 

region and 9 subjects on the descending limb (Winter and Challis 2010). In our study, tetanic 

stimulation being higher in the supine position, compared to seated, suggested that all our 

subjects were operating on the ascending limb of the force-length curve. However, such 

variability poses limitations on the generalisability of the findings and should be considered 

in future studies examining mechanical effects through hip joint manipulation. Further, 

muscle activation stimulation studies are typically difficult to recruit subjects, due to the 

discomfort levels caused by the delivery of the noxious stimuli (Bampouras et al. 2012; Billot 

et al. 2011), potentially affecting the statistical power of the study. A post-hoc power analysis 

(G* Power; Faul et al. 2009) on the current study’s results, suggested that the tetanic torque 

comparison had sufficient power (0.99) while the antagonistic torque power was lower (0.67) 

and a sample size of 12 would be required to achieve power of 0.8 (for a two-tailed t-test with 

alpha level at 0.05 and effect size of 0.9).     

The present study shows that although antagonistic hamstrings co-activation torque is 

substantial and affects the estimation of knee extensor MVC, it is not a contributing factor to 
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the variation in isometric knee extension torque between different hip angles. This variation 

is explained, however, by the lower activation capacity in the supine position.  Biomechanical 

models must consider variations with knee and hip joint positioning in both agonist activation 

and antagonist co-activation to more accurately reflect experimental observations of 

quadriceps muscle function.       
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FIGUREs AND TABLE 

 

 

Fig. 1. Schematic diagram of the experimental set up for seated (left) and supine (right) 

positions. Seated position hip joint angle was set at 90°, while supine 160° (180° = full 

extension) with the knee and ankle joint angle at 90° in both positions. Solid rectangular 

shapes represent the dynamometer seat. Rectangular patterned shapes indicate straps placed 

on the lower leg (securely strapped to a force transducer), tested thigh and pelvis, for both 

conditions. Triangular patterned shapes indicate mechanical blocks used in the supine 

position to avoid extraneous movement upwards. 

  

 

Fig. 2. Typical Joint MVC (panel A) and tetanic stimulation (panel B) torque traces from one 

subject for both seated and supine positions. Note the direction of change in the results with 

the joint MVC torque being higher for the seated position but the tetanic stimulation torque 

higher for the supine position.    
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Fig. 3. Typical results from one subject showing electromyography (EMG) and torque during 

four submaximal contractions of the BF when acting as an agonist. Torque was plotted 

against the EMG signal and a line was fitted to provide a regression equation, with a 

minimum coefficient of determination value of 0.9 set as the fit acceptance criterion. The 

regression equation was then used to estimate torque when the BF acted as antagonist.  
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Table 1. Descriptive statistics for maximum voluntary contraction (MVC) torque, tetanic 

stimulation torque, antagonistic torque and corrected MVC torque for both conditions (seated 

and supine). Data are presented as mean ± SD. * denotes significant difference at p < 0.05 

between seated and supine conditions. Effect size (ES) in brackets. 

 

 Joint MVC 

torque(N•m) 

Tetanic 

torque(N•m) 

Antagonistic 

torque (N•m) 

Mechanical 

ratio (%) 

Corrected MVC 

torque (N•m) 

Seated 241.2 ± 69.8 98.9 ± 27.5 26.0 ± 20.4 34.2 ± 24.5 267.3 ± 87.0 

Supine 244.9 ± 71.8 110.6 ± 31.9* 

(1.1) 

12.0 ± 7.4* (0.9) 31.2 ± 13.1 256.9 ± 77.7 

 

   

 

 

  


