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Abstract

The Effects of Eye Movements on Postural Control in Young and

Older Adults.

Neil M. Thomas, BSc

A thesis submitted for the degree of Doctor of Philosophy

Word count: 62480

April 2018

Eye movements are used day-to-day to acquire visual information. Vision is also

used for postural control. There are growing indications eye movements can affect

postural control. However, this has not been investigated in older adults, which is

surprising given the high incidence of falls in older populations. The present thesis

aims to address this.

The first experimental chapter explores the effects of eye movements on balance

during standing in young and older adults. The findings show decreased stability

during smooth pursuits, whereas saccades maintained stability to that when fix-

ating a static target. The older adults matched the younger groups performance

throughout.

The second experimental chapter explores the effects of smooth pursuits and sac-

cades on balance during locomotion in young and older adults. Smooth pursuits

were shown to decrease stability, whilst saccades maintained stability compared to

fixating a static target. The effects of the eye movements were similar in the older

adults. However, the elders exhibited lower baseline stability.

The third experimental chapter explores the effects of tracking a real-world stimulus

(another person known as ‘pedestrian’) on balance control during locomotion. The

pedestrian could be standing still or walking. Fixating the stationary and the

walking pedestrian decreased stability similarly when compared to free gaze when

the pedestrian was not present.

iv



To determine whether these results were transferable to natural gaze rather than

instructed gaze, the fourth experimental chapter explores free gaze patterns in a

similar real-world environment. Both the young and older adults typically fixated

the pedestrian when he was standing still and walking, but began to ignore him

once he had walked away from their direction heading. Therefore, experiment 3

behaviour was transferable to natural gaze patterns. The older adults also adopted

a more cautious approach by fixating regions on the ground initially, and for longer,

before looking to their direction heading.
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Chapter 1

General introduction

There is a well documented high incidence of falls and fall-related injuries amongst

older adults (Ambrose et al., 2013). The consequences not only impact on the

individuals concerned, socially and psychologically, but place a substantial burden

on health care providers the world over. Fragility management is thought to cost

the UK National Health Service alone £2.7 billion a year (NICE, 2013). This is

further exacerbated by today’s ageing population, which is expected to reach over

21.1% by 2050 (UN, 2013). Furthering understanding of the mechanisms associated

with increased risk of falls is, therefore, an issue of major contemporary relevance.

1.1 Human balance in context

Maintaining an upright posture during day-to-day activities is a largely automatic

affair and may seem easy for most healthy young adults. However, the mechanisms

and processes which enable us to achieve this are numerous and complex in nature.

This is because the very act of being upright places us in an inherently unstable

1
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position. Consider a standing person. The point at which all the matter contained

within their body is concentrated, known as the centre of mass (COM), is located

high above a relatively small area encompassing the feet. Thus, gravity is always

pulling body segments about their supporting pivots (the ankles, knees and hips),

and we must make continuous corrections to prevent loss of balance (Winter, 1995).

Things become even more challenging during walking, as the COM must be volun-

tarily shifted forward, which effectively leads to a cyclic series of controlled falls onto

the lead foot (Winter, 1995). Add to this changing terrain and complex environ-

ments, and balance demands increase significantly (Patla, 1997). Intuitively then,

a person must sense how they are moving in relation to the external environment in

order to initiate appropriate postural adjustments (Guerraz and Bronstein, 2008).

One such sense is vision.

1.2 Vision and balance control

1.2.1 Retinal

Visual estimates of self-motion are typically considered in the context of Gibson’s

theory of direct perception (Gibson, 1950). Gibson suggested that light reflected off

structures in the environment reaching the retina creates an optic array surrounding

the observer. When the observer moves, the structure of the array changes, which

generates an optic flow field about a point of central observation (Gibson, 1950).

Consider a standing person who sways in the lateral direction whilst looking at

a fixed point on a wall. The change in patterns of light on the retina (caused

by the person’s movement) would contain information about the magnitude and

direction of motion in relation to the fixed point, and the central nervous system
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(CNS) appears to use this to initiate appropriate postural corrections. Evidence

for this can be taken from experiments involving moving visual surrounds, e.g.

linearly oscillating walls, floors and tunnels (Bronstein, 1986, Dijkstra et al., 1994,

Fluckiger and Baumberger, 1988, Lee and Lishman, 1975, Stoffregen, 1985), which

have frequently shown a coupling of postural sway with stimulus motion. This is

considered to be a consequence of the CNS misinterpreting self-motion for motion of

the visual field and initiating incorrect postural responses (Guerraz and Bronstein,

2008).

More recently, retinal detection of self-motion for balance control has been shown

to persist during locomotion, with direction specific mediolateral (ML) and anteri-

oposterior (AP) trunk movement and increased step-width variability in response

to perturbations of the visual field (Logan et al., 2010, 2014, Franz et al., 2015).

Step-width variability is of particular interest as it is linked to control of the bod-

ies COM in the ML plane on a step-to-step basis (Bauby and Kuo, 2000). Such

contributions appear to be less dominant in the AP plane – since the magnitude

of change to the visual field is far greater than that in the ML plane, estimates of

self-motion with respect to the vertical can be more challenging in the AP plane

(Warren et al., 1996).

1.2.2 Extraretinal

Another mechanism of visual self-motion detection relates to extraretinal signals.

Paulus et al. (1984) found standing balance was improved whilst participants visu-

ally fixated on a small stationary light emitting diode in an otherwise dark environ-

ment when compared to complete darkness. In these conditions, compensatory eye

movements in response to movements of the head during postural sway keep gaze
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fixated on the target (Kowler, 2011), implying little or no changes to light patterns

on the retina. Thus, the eye movements themselves must facilitate estimates of

changes in body position relative to the fixation point. Two lines of reasoning have

been discussed to explain this behaviour. The first is related to extraocular muscles

feeding information about eye position, which can only be interpreted after initi-

ation of eye movements – evidence for this comes from direction specific postural

sway in response to stimulation of the extraocular muscles responsible for the eye

movements (Guerraz and Bronstein, 2008). The second infers a copy of the motor

command to signal eye movements (an efference copy) is used to anticipate displace-

ment of the eyes relative to the fixation point, which suggests that changes in body

position can be predicted in a feed-forward manner (Guerraz and Bronstein, 2008).

It is currently not known if the extraretinal component of balance control persists

during walking. However, researchers found a minimum threshold of 0.3◦ of eye

movement for 1 cm of translational head movement was useful for extraretinal bal-

ance control during standing (Guerraz and Bronstein, 2008). During locomotion,

the gait cycle would induce translation head movements meeting this threshold.

Thus, it seems logical that extraretinal signals may be of use for balance control

during locomotion, at least when fixating an appropriately stable region of the en-

vironment.

1.3 Eye movements

The extraretinal signals used for balance control result from gaze controlling eye

movements initiated by the vestibulo-ocular reflex (VOR) and smooth pursuit sys-

tem. These are used to stabilise a fixation and maintain visual consistency by

keeping the object of interest on the central region of the retina (the ‘fovea’), where
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visual acuity is highest (Kowler, 2011). In addition to facilitating extraretinal bal-

ance control, such eye movements can be considered critical for accurate retinal

detection of self-motion, since they provide a stable visual reference frame from

which shifts in body position can be estimated. Other kinds of eye movements,

however, can change the structure of retinal flow, and have been shown to affect

balance control.

1.3.1 Smooth pursuits

Smooth pursuits are used to view moving objects, where a continuous eye rotation

keeps the target of interest stabilised on the fovea and thus in clear view (Kowler,

2011). Strictly speaking, smooth eye rotations are needed when tracking fixed ob-

jects during self-motion in addition to externally moving objects. For example,

fixating a target located on the ground whilst walking. Because this can be consid-

ered a ‘gaze control’ eye movement, herein, smooth pursuits are considered in the

context of tracking externally moving objects only (e.g. a passing pedestrian).

Smooth pursuits have been shown to increase postural sway in young adults (Glasauer

et al., 2005, Laurens et al., 2010). Participants were asked to track an oscillating

target over a feature rich background, and thus, in the presence of retinal flow.

Therefore, the retinal flow generated during the smooth pursuit must have been

more difficult to interpret for balance control. This can be explained by changes

in its structure. During a smooth pursuit, whilst the target of interest is typically

stabilised on the fovea, the background information appears to shift in the opposite

direction to the target movement, and may be subject to motion blur depending on

the speed of the eye rotation (Schulmann et al., 1987). This would likely make the

retinal flow more complicated and thus difficult to interpret to estimate changes in
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body position, which results in less postural stability. Such an effect may be further

exacerbated by the retinal flow being prevalent in the periphery of vision, which

has been associated more with balance control (Dichgans and Brandt, 1978).

In a second condition, the participants tracked an oscillating target with no back-

ground visual information (in an otherwise dark environment), which also increased

postural sway. Assuming accurate tracking of the target, retinal flow in these con-

ditions would be minimal. Thus, the reduced stability was likely a consequence of

more noisy extraretinal signals.

There are data, however, which suggest that smooth pursuits can improve stability

(Rodrigues et al., 2015). Postural sway when tracking a moving target was com-

pared to that when fixating on a stationary target, and there was an increase in

stability. The researchers suggested that postural sway was modulated to afford

greater accuracy of gaze behaviour, or to stabilise the relationship between body

position and visual orientation. The exact reasons for the differences in results

across experiments remains unexplained, but might be related to differences with

the methodological designs. For example, Rodrigues et al. initiated the visual stim-

ulus on a computer monitor, whereas other studies utilised larger projection screens

occupying the full field of vision (Glasauer et al., 2005, Laurens et al., 2010). There-

fore, the relatively small displacement of the visual target on the computer screen

– which would have generated an equally small smooth pursuit eye rotation – did

not affect retinal flow sufficiently to bring about a negative change to balance.

Despite investigations about how humans control their direction heading during

smooth pursuits, it is currently not known if and how they affect balance during

locomotion with respect to maintaining an upright posture. When considering the
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nature of retinal flow, however, negative changes to balance are feasible. For exam-

ple, visually fixating a stationary object straight ahead whilst walking would cause

radial flow from forward progression, and this would emanate from the central point

of observation, with information at the periphery of vision shifting parallel to the

line of motion (Warren and Hannon, 1990). Such flow may be considered useful

for balance control since it provides a relatively stable reference frame (assuming

accurate gaze control) from which self-motion with respect to the upright can be

determined. Conversely, tracking an object in horizontal motion would cause hor-

izontal flow from eye rotation in addition to radial flow from forward progression

(Warren and Hannon, 1990). The resulting pattern would resemble a curved move-

ment with a shifting focus of expansion. Similar to during standing, this added

complexity may cause difficulty when estimating self-motion, thus decreasing bal-

ance control.

It can be expected that the dominant area of change might be in the ML plane, since

visual sensitivity to retinal flow is greater there (Warren et al., 1996). Although,

since vision does affect the AP plane, changes in this plane caused by smooth

pursuits cannot be ruled out, and this may even be specific to the different phases

of locomotion. Recent work by Logan et al. (2014) has revealed increased foot

dorsiflexion and thigh flexion during the swing phase of gait with an approaching

visual scene (sped up optic flow in relation to walking speed). The major implication

of this is that the midstance of gait appears to mark a visually sensitive period

to AP flow in which the height of the swing limb can be modulated in order to

accommodate for hazards or impending collisions. If visual tracking during smooth

pursuits reduces the ability to interpret AP flow due to more complicated retinal

flow patterns, it could affect swing limb trajectory and thus reduce the efficacy of

trip avoidance strategies.
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1.3.2 Saccades

Saccadic eye movements are rapid shifts of gaze from one region or target to another,

and are commonly utilised to visually explore the environment (Kowler, 2011). In

contrast to smooth pursuits, saccades have consistently been shown to maintain or

improve stability (Bonnet and Baudry, 2016, Giveans et al., 2011, Legrand et al.,

2013, Stoffregen et al., 2006). Maintenance of stability may not be unexpected. Be-

cause saccades are essentially a series of fixations separated by short rapid intervals,

they facilitate relatively long periods of high visual acuity between successful shifts

of gaze. Thus, they can preserve the stable visual field similar to gaze control eye

movements. The improved balance control in some situations has been suggested

to be a result of the CNS attenuating body movements to better connect pre- and

post-saccadic views, thus facilitating more stable gaze shifts. The magnitude of

attenuation during saccades is thus likely dependent on factors such as frequency

and duration of saccades, with higher frequencies requiring more postural stabilisa-

tion to facilitate accurate gaze shifts. Such a response also likely rules out normal

saccades and smooth pursuits increasing cognitive load to the point of negative bal-

ance control. Thus, the changes to posture caused by smooth pursuits (Guerraz and

Bronstein, 2008, Laurens et al., 2010), rather than being due to cognitive load, were

likely due to changes in retinal and extraretinal signals. Presumably, saccades with

an unnaturally high frequency would reduce stability, since the useful stable visual

field (usually preserved with slower frequency saccades) would become difficult to

interpret. That is, there would be less time for fixation and more time when vision

is down-weighted during gaze shifts.

With regard to locomotion, similar to smooth pursuits, the effects of saccades have

not strictly been examined in the context of balance control. However, since it
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is known saccades maintain longer periods of fixation, the stable reference frame

provided by fixations should be preserved during locomotion – ignoring saccades to

extreme displacements and/or with unnaturally high frequency.

1.4 Ageing

1.4.1 Processing retinal information for balance control

Advanced age has been shown to cause a decline in detecting self-motion from visual

information (Warren et al., 1989), such as a reduced ability to detect direction head-

ing from optic flow and to re-weight visual information during locomotion (Berard

et al., 2009). Older adults are also typically more sensitive to visual field pertur-

bations during standing (Borger et al., 1998, Sundermier et al., 1996, Wade et al.,

1995) and walking (Franz et al., 2015), with bigger postural sway, and increased

ML step placement and COM trajectory variability, respectively. It is thought that

the ageing CNS relies on visual information more for balance control, at least in

the short term (Jeka et al., 2006, 2010), because of vestibular and mechanical sen-

sory declines (Bugnariu and Fung, 2007, Sundermier et al., 1996, Yeh et al., 2014).

Strong evidence for this interpretation comes from older adults displaying increased

sensitivity to visual feedback coupled with reduced sensitivity to tendon vibration

(Eikema et al., 2013). Thus, if elders rely on vision more and cannot decompose

retinal flow as effectively as younger adults, eye movements may exacerbate the

increase in postural sway demonstrated in some young subjects tracking a moving

target over fixed backgrounds.
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1.4.2 Vestibulo-ocular reflex

The VOR is important for stabilising the retinal image thus keeping gaze fixated

on regions of interest during movements of the head. Therefore, it is critical for

gaining accurate estimates of self-motion based on retinal and extraretinal informa-

tion. Researchers have often examined age-related declines in the VOR by testing

the ability of elders to fixate on stationary targets during movements of the head.

Peterka et al. (1990) found a decrease in VOR gain response during full body si-

nusoidal rotations using electrooculography. Paige (1991) also found age-related

declines in VOR gain with high velocity and high amplitude sinusoidal rotations,

suggesting a degradation of VOR function. Baloh et al. (2003) investigated changes

in VOR response in the elderly during yearly examinations up to 10 years (aver-

age age on entry was 78.5 years). They found a deteriorating gain with age which

weakly correlated with fall risk. More recent data indicate that substantial declines

in VOR function are limited to adults aged 80 years and over, but the functional

consequences of such degradations are yet to be discerned (Li et al., 2015). It is

possible that since the VOR promotes stabilisation of gaze relative to movements of

the head, and eye movement signals are interpreted for balance control in a number

of conditions, a decline in VOR function may affect both retinal and extraretinal

components of balance control.

1.4.3 Smooth pursuit system

The smooth pursuit system is also a mechanism utilised to keep gaze fixated on

moving targets, and it too has been shown to degrade with age, such as reduced

accuracy (Moschner and Baloh, 1994, Spooner et al., 1980, Ross et al., 1999), delayed

onset latency (Sharpe and Sylvester, 1978, Knox et al., 2005), and a greater number
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of catch-up saccades to reposition the eye following tracking errors (Ross et al.,

1999, Sharpe and Sylvester, 1978). It is possible, therefore, that declines in smooth

pursuit function also impact on the extraretinal component of balance control whilst

tracking moving objects, by further complicating extraretinal signals due to more

noise generated in an inaccurate system.

1.4.4 Saccades

Similar to young adults, saccades have been shown to improve stability in the el-

derly during standing. Aguiar et al. (2015) compared balance when fixating on a

static target with saccadic eye movements at different frequencies and during differ-

ent stance conditions (no young group), and found increasing stability with faster

eye movements. Interestingly they found no change in postural sway between wide

and narrow stance (AP axis) in the elders, which contradicts previous results from

younger participants who became more unstable during narrow stance (Rodrigues

et al., 2013). The authors suggest that they may have adopted a more rigid postural

response due to muscle co-contraction, which has previously been shown in elders

when performing dual tasks stood with their feet together (Melzer et al., 2001). This

may be a mechanism to compensate for natural age-related declines in the balance

control system. Alternatively, elders often present with impaired performance dur-

ing saccadic eye movements, such as reduced onset latency and execution of more

saccades to reach a specified fixation point (Moschner and Baloh, 1994). Thus, an

exaggerated postural response, i.e. more stability during feet together stance, may

have been required to facilitate gaze shifts in a more inaccurate system.

The notion that saccades can improve balance may be of particular interest in the

field of gerontology. It has previously been proposed that populations at higher
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risk of falls attempt to utilise saccades more instead of smooth pursuit eye move-

ments, since the latter were shown to decrease stability (Schulmann et al., 1987).

However, it has also been suggested that it is not optimal to foster dependency on

visual fixations in patients undergoing vestibular rehabilitation therapy (Han et al.,

2011). Since normal saccadic eye movements, usually completed in around 40.6

ms (Abrams et al., 1989), are separated for relatively long periods by stationary

fixations, utilising saccades may also not be optimal in training programs. Instead,

Han et al. (2011) suggest exposing patients to moving visual scenes in artificial

environments, or watching videos of conflicting stimuli while performing head and

body movements may be beneficial. If it is shown that smooth pursuits negatively

affect balance in older adults, perhaps it is warranted to apply similar interventions

in older populations.

1.5 Conclusion and aims

There are growing indications that eye movements can affect balance control in

young adults. Of particular interest is that smooth pursuits can cause decreased

stability. Yet, despite the high incidence of falls in older populations, this has not

been investigated in the elderly. There is a pressing need, therefore, to advance our

understanding of the effects of eye movements on balance control, amongst different

age groups and across postural tasks. To these ends, a series of experiments were

conducted.

• Experiment 1 (Chapter 3): The effects of smooth pursuit and saccadic eye

movements on balance control were assessed in young and older adults during

standing in the laboratory. It was hypothesised that smooth pursuits would
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decrease stability, and with a more profound effect in the older adults. In

contrast, saccades were hypothesised to maintain or improve stability in both

age groups.

• Experiment 2 (Chapter 4): The effects of smooth pursuit and saccadic eye

movements on balance control were assessed in young and older adults during

locomotion in the laboratory. It was hypothesised that smooth pursuits would

decrease stability, and with a more profound effect in the older adults. In

contrast, saccades were hypothesised to maintain or improve stability in both

age groups.

• Experiment 3 (Chapter 5): Building on the results of the previous investiga-

tions, the research was moved into a real-world environment. The effects of

visually fixating a real-world pedestrian on balance control were assessed in

young and older adults during locomotion. It was hypothesised that visually

fixating the pedestrian would lead to decreased stability similarly in both age

groups, and with a more profound effect when the pedestrian was walking.

• Experiment 4 (Chapter 6): To put the results of Chapter 5 into context, natu-

ral gaze patterns in young and older adults were examined during locomotion

in a similar real-world environment.



Chapter 2

General methods

This section details methods used where they remained consistent in each exper-

imental chapter so as to avoid unnecessary repetition, or where a more in depth

elaboration is appropriate.

2.1 Ethical procedures and considerations

All investigations were carried out in accordance with the recommendations of the

University of Cumbria’s ethical principles and guidelines for research involving hu-

man subjects, and all procedures, information to the participants, and participant

consent forms, were approved by the University of Cumbria Research Committee

(see Appendix F). In line with this, all data was purged of identifying material

and kept no longer than necessary as per institutional guidelines. Further, the par-

ticipants had the right to withdraw from the study they participated in up until

dissemination of the aggregated findings. Since the work described in Chapter 4

took place in Italy, several discussions with colleagues took place to ensure that the

14
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translation of the participant information sheets and consent forms were accurate,

whilst also meeting the University of Rome ‘Foro Italico’s’ ethical requirements.

Prior to recruitment, all of the older participants were interviewed by telephone to

determine suitability for testing. Further, to ensure their safety and well-being, in

addition to avoiding interference of other factors in the testing, the cognitive abilities

of the older participants were assessed with the mini mental status examination

(MMSE: see Appendix G). Briefly, this includes a series of information recollection

and motor control tasks designed to indicate the participant’s cognitive state. All

participants achieved a score of ≥24 out of 30. This was considered as a minimum

acceptable threshold for involvement, and indicated the participants had normal

cognition.

Each participant’s visual acuity was assessed to ensure they could walk safely in

the experimental environments, and for methodological purposes (described in each

chapter where appropriate). A Snellen chart was used to achieve this (see Appendix

H), which involves reading high contrast letters which get smaller on each subsequent

line from a set distance. It provides a fraction, with the first number representing

the distance of the text from the observer, and the second representing the distance

at which the observer can clearly read the letter. 20/20 vision, for example, is

considered normal. I.e. the observer can see at 20 feet what the average eye can

see at 20 feet.

Finally, all of the participants adhered to a series of rigorous inclusion criteria.

These included, by self-report: (1) No macular degeneration, glaucoma, cataracts

or colour blindness; (2) No muscle or bone conditions which could prevent standing

or walking for short intervals with regular breaks, including but not limited to,

lower limb, hip or spine surgery within the previous year, present or recent injury
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or pain in any region; (3) No psychological/neurological conditions which could

prevent standing or walking for short intervals with regular breaks, including but not

limited to, Parkinson’s disease, vestibular impairment (dizziness/vertigo), numbness

or loss of sensation in the lower limbs, or schizophrenia; (4) No severe motion

sickness; (5) No medication which could depress the nervous system or effect balance

(benzodiazepines, anti-depressants, anti-seizure, or anti-anxiety); (6) No multiple

falls within the previous year; (7) No over-reliance on handrails when climbing the

stairs; (8) No assistive walking devices such as a cane, crutches, or a walking frame.

These criteria aimed to ensure that the sample of participants were healthy (i.e. free

from pathology which could affect balance, gait, or vision; (Ambrose et al., 2013)),

and could complete the testing with no discomfort. Some of criteria have also been

used in previous vision and balance literature (Logan et al., 2010).

2.2 Eye tracking equipment

The participants wore eye tracking glasses (Tobii Glasses 2 Eye Tracker, Tobii Tech-

nology, Danderyd, Sweden). These have a one point calibration procedure, autopar-

allax compensation and slippage compensation allowing for persistent calibration

throughout testing with no loss of data aside from blinking. Gaze data was sampled

at 50 Hz and subsequently filtered with the Tobii I-VT fixation filter to yield gaze

fixations (window length 20 ms, threshold 30 ◦/s). 2D video sequences consist-

ing of the participant’s point of view of each visual scene superimposed with their

gaze fixations was exported and analysed offline depending on the experimental

requirements, which are outlined in the methods of each experimental chapter.
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2.3 Custom-made contact mat

A custom-made contact mat was built by the present author and used to control

data acquisition, stimulus presentation and experimental timing (Fig. 2.1). This

was constructed from strips of conductive tape laid over a flooring tile. Conductive

tape was also placed on the heel of the participants. When the participants made or

broke contact with the mat (corresponding to heel strike or heel off at gait initiation)

the mat sent a signal through a custom USB serial port also built by the present

author to a computer running Python code applicable to each experiment. For

example, in experiment 1 (Chapter 3), the first heel strike was used to present a

visual stimulus. The temporal resolution of this setup (i.e. the time taken to record

a heel strike or heel off event) was evaluated by sending data through a serial port

and over the closed circuit contact mat to an Arduino micro controller, and back

again. In reality, this takes even longer than simply closing or opening the circuit

with a heel strike or heel off event, respectively. Notwithstanding this, the time

taken was sub-millisecond, which indicates a more than adequate resolution.

2.4 Visual stimuli

Visual stimuli were presented to the participants (Chapters 3 and 4) to initiate

eye movements and generate different forms of retinal flow. All stimuli were pro-

grammed in Python by the present author using Psychopy stimuli presentation

tools (Peirce, 2007). For example, to generate an oscillating visual background, a

large-field grating was defined and programmed to update its position as a function

of time following a sinusoidal trajectory using a harmonic equation, where D =
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Figure 2.1: Example of person walking over the contact mat.

maximum displacement in degrees of visual angle, P = new position of stimulus on

each monitor refresh, Hz = intended oscillation frequency, t = time.

P = [Dsin(2πHzt)] (2.1)

2.5 Data analysis

2.5.1 Software

Two custom software applications were written by the present author to facilitate

analysis of data (Chapters 3 and 4). These are open source and freely available to

download and use.

The Sway Analysis Toolkit (SwAT) is a simple GUI application allowing users

to import and analyse postural sway data recorded with AMTI force platforms
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Figure 2.2: Graphical user interface of the SWaT, showing imported data ma-
trix and relevant buttons to process data, e.g. filtering and detrend functions.

in .csv format (Fig. 2.2). It is built on C++ with Qt and makes use of Eigen

and Biomechanical Toolkit libraries. It is available at https://github.com/N-M-

T/SWaT.

Fixation Logger (FLo) is a simple GUI application allowing users to import video

sequences superimposed with gaze fixations recorded from eye tracking equipment,

and log features frame-by-frame by a single key press (Fig. 2.3). It is built on C++

with Qt, and is available at https://github.com/N-M-T/FLo.

2.5.2 Custom scripts

All other data processing was performed using custom Python (Scipy, scientific

computing tools for Python) and R (R project for statistical computing) scripts

developed by the present author. The following key calculations were used (the

context of each is described in each chapter where applicable):

https://github.com/N-M-T/SWaT
https://github.com/N-M-T/SWaT
https://github.com/N-M-T/FLo
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Figure 2.3: Graphical user interface of the FLo showing imported eye tracking
video sequence.

Root mean square (RMS), where N = number of data points and n = 1, ...,N :

RMS =

√
1

N

∑
n2 (2.2)

Resultant timeseries (RT), where N = number of data points and n = 1, ...,N :

RT =
√
n1

2 + n2
2 (2.3)

Coefficient of variation (CV), where MEAN and SD = mean and standard deviation

of each data set, respectively:

CV =
SD

MEAN
100 (2.4)
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Hedges’ gav effect size as given by Lakens (2013), where N = number of data points

and n = 1, ...,N , and MEAN and SD = mean and standard deviation of each

group, respectively:

gav = dav

(
1 − 3

4(n1 + n2) − 9

)
(2.5)

dav =
Mdiff

SD1+SD2
2

(2.6)

Mdiff = MEAN1 −MEAN2 (2.7)



The previous chapter provided an overview of methods used where they remain

consistent throughout the thesis, or where further explanation was appropriate. The

following chapter explores the effects of smooth pursuits and saccades on balance

control during standing in young and older adults.
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Chapter 3

Eye movements affect postural

control in young and older females

The work presented is this chapter arose from the following publication (see Ap-

pendix A):

Thomas, N. M., Bampouras, T. M., Donovan, T. and Dewhurst, S. (2016), ‘Eye

Movements Affect Postural Control in Young and Older Females’, Frontiers in Aging

Neuroscience, 8, 216, DOI 10.3389/fnagi.2016.00216

And was presented at the 21st Annual Congress of the European College of Sport

Science, Vienna 2016 (see Appendix E).
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3.1 Introduction

Vision is an important sensory cue to familiarise ourselves with the external envi-

ronment, a prerequisite for which are voluntary or involuntary eye movements, nec-

essary to process information such as recognition, localisation and proprioception

(Donaldson, 2000, Irwin, 1991, Lewis et al., 1994). Vision also facilitates stabilisa-

tion of upright posture, by enabling detection of self-motion relative to structures in

the visual field (Dichgans and Brandt, 1978). There is growing evidence to suggest

eye movements interact with this process (Glasauer et al., 2005, Laurens et al., 2010,

Schulmann et al., 1987, Rodrigues et al., 2015). However, this has received little

attention in the gerontology literature, which is surprising given the prevalence of

eye movements in everyday life (Kowler, 2011), their potential link with postural

control, and the high incidence of falls and fall related injuries amongst the elderly

(Ambrose et al., 2013, Sturnieks et al., 2008). Here, the focus is on the effects of

eye movements on postural control during standing in young and older adults.

Visual cues for postural stabilisation have traditionally been associated with de-

formation of the retinal image. As a person shifts their position in space, changes

in the pattern of light intensities about a central point of observation create an

optic flow pattern, which is projected onto the retina. This projected image shift-

s/deforms creating retinal flow according an individuals movements (Gibson, 1950),

which the central nervous system (CNS) uses to estimate body position and initi-

ate appropriate postural adjustments (Lestienne et al., 1977, Nashner and Berthoz,

1978, Wapner and Witkin, 1950). Optical changes at the retina can include uniform

components, e.g. horizontal movement of the retinal image, parallax (generated by

near and far structures in the visual environment), and expansion and contraction,

which is indicative of anterior or posterior head motion (Gibson, 1950, Gibson et al.,
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1955). Evidence demonstrating how retinal flow guides postural adjustments can

be taken from investigations involving moving visual surrounds, e.g. linearly oscil-

lating walls, floors and tunnels, which have frequently shown a coupling of postural

sway with stimulus motion (Bronstein, 1986, Dijkstra et al., 1994, Fluckiger and

Baumberger, 1988, Lee and Lishman, 1975, Stoffregen, 1985). This is believed to

result from the CNS misinterpreting externalmotion for self-motion and incorrectly

adjusting body orientation (Guerraz and Bronstein, 2008).

There is a close relationship between the ways in which visual and vestibular infor-

mation about head position are used for postural control (DeAngelis and Angelaki,

2012), and eye movements have been shown to affect posture during standing. Fix-

ating on a small lit target in an otherwise dark room improved stability compared

to absolute dark (Paulus et al., 1984). In these conditions, visual and vestibular

initiated compensatory eye movements in response to movements of the head keep

gaze fixated on the target, implying diminished retinal flow. Therefore, eye move-

ments relative to the target seem to be used to infer body position in space (Guerraz

and Bronstein, 2008). Visually tracking moving targets with smooth pursuits, on

the other hand, caused increases of postural sway in young adults, in the presence

of a static visual field and without (Glasauer et al., 2005, Laurens et al., 2010).

This may be related to more challenging conditions for interpreting retinal flow for

postural control (Schulmann et al., 1987), or, in part, more complex extraretinal

signals (Glasauer et al., 2005). However, there are data which show an opposite

effect, indicating posture can be modulated for more accurate gaze behaviour (Ro-

drigues et al., 2015). This concurs with similar findings during rapid shifts of gaze

from one target to another with saccadic eye movements in young (Stoffregen et al.,

2006, Rougier and Garin, 2007, Rodrigues et al., 2013) and older (Aguiar et al.,

2015) adults, thus suggesting a functional integration of gaze and posture for both
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smooth pursuits and saccades. These differences remain unexplained. Moreover, lit-

tle is known about extraretinal control of posture in elders, or how smooth pursuits

effect balance in elders.

Older adults have demonstrated declines in visual self-motion perception (Warren

et al., 1989), and can become more unstable in the face of moving visual surrounds

(Wade et al., 1995, Sundermier et al., 1996, Borger et al., 1998). This might reduce

their ability to interpret retinal flow for postural control as effectively as younger

adults during eye movements. Declines in vestibulo-ocular reflex (VOR) function

with age (Peterka et al., 1990, Paige, 1991, Baloh et al., 2003) may additionally

affect the extraretinal component of postural control, since the VOR is one mech-

anism which serves to stabilise gaze, and eye movement signals appear to be used

to infer body position. Further, an inaccurate smooth pursuit system in elders

(Sharpe and Sylvester, 1978, Spooner et al., 1980, Moschner and Baloh, 1994) may

potentially cause less efficient processing of more complex extraretinal signals whilst

visually tracking moving targets, thus exacerbating the increase in postural sway

demonstrated by some young adults. Paquette and Fung (2011) indirectly assessed

balance during smooth pursuits in older participants, but the authors focus was gaze

accuracy, and they cannot clarify if declines in postural control were associated with

the gaze outcomes.

Because loss of balance in the elderly can be costly and debilitating (Brunner et al.,

2003), there is a pressing need to further understanding of the interplay between

eye movements and postural control in this population. Therefore, the present in-

vestigation assessed postural sway, increases of which can indicate reduced stability,

during visual fixation of stationary targets, smooth pursuits and saccades, in young

and older adults. The experiment also implemented combinations of absent, fixed,
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and horizontally oscillating visual backgrounds to generate different forms of reti-

nal flow, and to isolate the extraretinal factors involved in visual control of balance.

The following hypotheses were tested: (1) fixating a stable target would reduce

postural sway, (2) fixed backgrounds would have a stabilising effect and oscillat-

ing backgrounds a destabilising effect, (3) smooth pursuits would increase postural

sway, (4) saccades would decrease postural sway, (5) the older adults would be more

unstable throughout, and this would be more profound during smooth pursuits and

oscillating backgrounds.

3.2 Methods

3.2.1 Participants

Twelve young (mean ± SD, age: 26.1 ± 4.9 years, height: 1.68 ± 0.06 m, mass:

62.2 ± 13.7 kg) and 12 older (mean ± SD: age: 72.8 ± 6.9 years, height: 1.64 ±

0.05 m, mass: 63.6 ± 10.7 kg) females participated in the investigation. An initial

cohort of 20 elders was reduced to 12 following the screening protocols detailed in

General methods section 2.1.

3.2.2 Equipment

Visual scenes were rear projected (Sanyo PLC-XU74, Tokyo, Japan) onto a 3.2 ×

2.4 m translucent screen. The lower border of the screen was placed at foot level. An

AMTI AccuPower portable force platform (AMTI Force and Motion, Watertown,

MA, USA) was positioned with its centre 1 m adjacent to the middle of the screen.
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Participants wore eye tracking glasses as detailed in General methods section 2.2.

The experiment was carried out in a light-controlled room.

3.2.3 Visual scenes

Ten × 45 s visual scenes were used during testing (see General methods section 2.4).

Visual stimuli were programmed in degrees of visual angle to enable standardisation

between experiments. Visual stimuli included a red target (circle with a 3◦ diameter)

and a large-field background occupying the full width and height of the screen,

which was made up of black and white vertical stripes each with a width of 3◦.

Participants had an uncorrected visual acuity ≥20/100 measured on the day of

testing. Discrimination of spatial patterns separated by a visual angle of 50/60th

of 1◦ is possible even at lower visual acuities (Paquette and Fung, 2011). Therefore,

stimuli utilised in the present investigation were visible at all times, and this was

always confirmed with the participants.

The target could be fixed (F), moving smoothly (P) or moving with saccadic mo-

tion (S). When fixed, the target would remain in the centre of the screen at natural

gaze height (see below). When moving smoothly, the target would displace from

the centre of the screen to 6◦ in the vertical, horizontal or diagonal direction before

returning to the centre of the screen with a frequency of 0.33 Hz. For saccadic

movement, the same protocol was implemented; however, the target would disap-

pear from the centre of the screen and reappear at the 6◦ threshold, and vice versa.

Target direction was programmed to be random on each oscillation. The large-field

background could be absent (N), fixed (F) or oscillating horizontally to 6◦ from the

centre position in each left and right direction at 0.33 Hz (O). To simulate a con-

dition of darkness (D), a black screen was projected absent of any stimuli. Letter
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codes used to identify visual conditions are presented in Table 3.1. Six degrees of

visual angle was chosen to prevent head rotations which could affect measures of

postural sway, since gaze shifts of less than 15◦ are commonly are achieved without

rotations of the head (Hallet, 1986), and this method has previously been effective

in minimising head movements (Glasauer et al., 2005, Stoffregen et al., 2006, 2007).

Table 3.1: Letter codes denoting combinations of large-field background and
target state used to identify visual conditions. The first letters refer to the state
of the background and second refer to the state of the visual target. Adapted

from Laurens et al. (2010).

Target

Large-field background Fixed Smooth pursuit Saccadic

None NF NP NS
Fixed FF FP FS
Oscillating OF OP OS
No large-field background or target: Dark (D)

A novel approach was used regarding the height at which the visual targets were

presented, as opposed to eye level. Older adults have been shown to adopt for-

ward trunk lean, which may be related to factors such as backward disequilibrium

(Manckoundia et al., 2007) or poor balance and fear of falling (Sato and Maitland,

2008). Previous research has also shown focusing gaze at different heights affects

measures of postural sway, e.g. 25◦ up or down from eye level decreased sway ve-

locity and amplitude (Ustinova and Perkins, 2011). Consequently, if the targets

were presented at eye level it may have forced the older participants to adopt an

unnatural body lean and/or gaze height in order to maintain gaze on the target,

which could have affected the results. Therefore, prior to testing, all participants

were instructed to stand as still as possible with their feet together (no footwear)

in the middle of the force platform (position marked with a cross for accurate relo-

cation between trials) with their hands by their sides. They were then told to look

ahead as comfortably as possible at a visual scene consisting of horizontal green



Eye movements affect postural control in young and older females 30

lines which took up the full horizontal width of the screen, and covered 2◦ in the

vertical direction – each was separated by a gap of 2◦. After 30 s, gaze fixation

settled at a specific line or in between lines. This was considered to be natural gaze

height. The participants were subsequently instructed to adopt the same stance

position throughout testing, which was reiterated before each trial.

3.2.4 Experimental protocol

Two practice trials of 45 s duration separated by 10-20 s were granted following de-

termination of natural gaze height to familiarise the participants with measurement

of postural sway. Following a break of 2-5 minutes, testing commenced. The partic-

ipants, relocated on the cross and in the same stance as before, were instructed to

fixate their gaze on the red target. If the target moved, they should follow it with

their eyes only, making sure not to rotate or tilt their head. During the dark condi-

tion, they were told to keep looking ahead. The 10 visual scenes were displayed to

each participant in a random order, which was different for each participant. After

the 3rd and 7th scene, the participants were granted a 3-5 minute break where they

sat down. In between the remaining scenes there was a 10-20 s break where par-

ticipants remained standing. A member of the research team was present behind

each participant during testing in case of loss of balance. The eye tracking glasses

were calibrated to each participant before determining natural gaze height after the

practice trials, and subsequently after each 3-5 minute break.

3.2.5 Force platform data

Force platform data were sampled at 100 Hz for 45 s during each trial and anal-

ysed offline (see General methods section 2.5.1). Since the investigation was not
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concerned with how quickly the participants adapted to new stimuli, or end antici-

pation effects, the first and final 5 s were discarded leaving 35 s of data for analysis.

This was because elders have been shown to have similar adaptation rates to young

adults regarding sudden changes in visual stimulus motion during an initial 5 s

period (Jeka et al., 2010). Mediolateral (ML) and anteriorposterior (AP) centre of

pressure (COP) coordinate timeseries (x and y, respectively) were then computed

and passed through a 4th order zero-lag Butterworth filter with a cut-off frequency

of 10 Hz. This choice of cut-off was determined with residual analysis of the raw

data (Winter, 2009).

To characterise the size of the path travelled by the COP over the surface of support

on both axes, we calculated the root mean square (RMS) of each de-trended time-

series (see General methods section 2.5.2). Rocchi et al. (2004) recommended RMS

to characterise COP coordinate timeseries following principle component analysis.

Further, repeated RMS measures of postural sway have been shown to be reliable

in young and older populations (Lin et al., 2008).

3.2.6 Gaze fixations

Following export of the gaze data as detailed in General methods section 2.2, the

position of the target and the position of each gaze fixation as x and y coordinates

on the 2D video frame (Fig. 3.1) was determined using a motion tracking algorithm

(OpenCV Python libraries). Each video sequence was optically filtered by adapting

hue, saturation, brightness and contrast, and luma space level settings in order to

improve the accuracy of the tracking algorithm. The resultant coordinate timeseries

was then calculated as detailed in General methods section 2.5.2.
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(A)

(B)

Figure 3.1: Representation of target trajectory and gaze fixations from 1 par-
ticipant, A: during smooth pursuits, B: during saccades. Coordinates along each
axis were taken from the 2D video scene relative to the observer and represent
arbitrary units (a.u.). Note that the target position is not stable due to the pos-
tural sway of the observer. Also note the errors of the fixations compared to the

target locations.
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The first and final 5 s of each timeseries were removed in accordance with the force

platform data. Where no gaze data were sampled due to blinking, the target coordi-

nate at the corresponding time point was converted to zero. Errors of gaze relative

to the target were then assessed by computing the RMS of gaze subtracted from the

target position throughout each video sequence (RMS-gaze error). Reliability of the

tracking procedure was assessed by re-tracking the target and fixation position dur-

ing scene OP from the young participants and computing the coefficient of variation

(CV: see General methods section 2.5.2) between the gaze error outcome measures

from each. Scene OP was chosen as it presented with the most challenging optical

conditions for motion tracking. The CV between tests (0.47%) indicated excellent

reliability. No gaze data were collected for the dark (D) condition.

3.2.7 Statistical analysis

Age (young and older) and condition (10 × visual scenes) were considered as two

independent factors. The effects of these two factors on the postural sway out-

come variables RMS-x and RMS-y were examined with a two-way (age × condi-

tion) mixed analysis of variance (ANOVA). The effects of the same independent

factors minus the dark condition on RMS-gaze error were also examined with a

two-way mixed ANOVA. Post-hoc analyses (t-tests or Wilcoxon signed-rank tests)

with Benjamini-Hochberg corrections were used where applicable. Where significant

differences were found between conditions (p<0.05), Hedges’ gav effect sizes were cal-

culated (see General methods section 2.5.2). Common indicative effect thresholds

for effect sizes are small (0.2), medium (0.5) and large (0.8). Statistical results were

interpreted in the context of strength of evidence against the null hypotheses, which

was determined by the magnitude of the p values (smaller values indicate stronger
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evidence) and effect sizes. Statistical analyses were performed with the R software

package.

3.3 Results

3.3.1 Postural sway

RMS of the COP coordinate timeseries on the ML (x ) and AP (y) axes for young

and older females are presented in Table 3.2 and Fig. 3.2. Significant p values for

the ML plane are also presented in Table 3.3.

Table 3.2: RMS of COP coordinate timeseries on the, A: ML (x ) axis, B: AP
(y) axis, in young (n = 12) and older (n = 12) females during different visual
scene conditions. D: dark, N: none, F: fixed, O: oscillating, P: pursuit, S: saccadic.

Data are presented as mean ± SD

(a)

RMS-x (mm)

Condition Young Older

D 4.95 ± 1.68 4.70 ± 1.73
NF 4.43 ± 1.39 3.99 ± 1.11
FF 3.44 ± 1.08 3.58 ± 0.55
OF 5.69 ± 1.89 4.72 ± 1.64
NP 5.06 ± 1.21 4.85 ± 1.43
FP 4.82 ± 1.56 4.33 ± 0.92
OP 5.81 ± 1.96 5.36 ± 1.76
NS 4.59 ± 1.62 4.01 ± 0.85
FS 3.63 ± 0.79 3.46 ± 1.03
OS 6.32 ± 2.31 5.09 ± 2.28

(b)

RMS-y (mm)

Condition Young Older

D 5.66 ± 1.78 5.22 ± 1.75
NF 4.79 ± 1.70 4.67 ± 1.27
FF 5.18 ± 2.39 4.78 ± 1.30
OF 4.99 ± 1.52 4.68 ± 0.95
NP 5.89 ± 2.15 5.14 ± 2.00
FP 4.78 ± 1.23 4.94 ± 0.89
OP 5.66 ± 1.84 5.44 ± 1.42
NS 4.80 ± 1.29 4.41 ± 0.73
FS 3.97 ± 1.11 4.26 ± 1.12
OS 4.89 ± 0.94 5.13 ± 1.30

ML (x) movement: There was no main effect of age on RMS-x. There was a sig-

nificant main effect of condition on RMS-x (F9,198=17.769, p<0.001). This was

confirmed with a robust mixed ANOVA (p<0.001). Post-hoc comparisons revealed:

(1) A reduction of postural sway with a fixed target in dark (NF) compared to dark
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(A)

(B)

Figure 3.2: RMS of COP coordinate timeseries on the A: ML (x ) axis, B: AP
(y) axis, in young (n = 12) and older (n = 12) females during different visual
scene conditions. D: dark, N: none, F: fixed, O: oscillating, P: pursuit, S: saccadic.
Data are presented as medians and lower and upper quartiles with Tukey style

whiskers (outliers plotted separately).
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alone (D) (p=0.032, 12.75%, gav=0.40); (2) A reduction of postural sway with a fixed

background and a fixed target (FF) compared to dark alone (D) (p<0.001, 27.18%,

gav=0.96), compared to a fixed target in dark (NF) (p=0.005, 16.54%, gav=0.63),

and a reduction of postural sway with a fixed background and saccades (FS) com-

pared to saccades in dark (NS) (p=0.001, 17.68%, gav= 0.66); (3) An increase in

postural sway with an oscillating background and a fixed target (OF) compared to

a fixed background and a fixed target (FF) (p<0.001, 48.20%, gav=1.16), an oscil-

lating background and smooth pursuits (OP) compared to a fixed background and

smooth pursuits (FP) (p=0.001, 22.03%, gav=0.62), and an oscillating background

and saccades (OS) compared to a fixed background and saccades (FS) (p<0.001,

60.91%, gav=1.18); (4) An increase in postural sway with smooth pursuits in dark

(NP) compared to a fixed target in dark (NF) (p=0.038, 17.85%, gav=0.57), and

smooth pursuits with a fixed background (FP) compared to a fixed target with

a fixed background (FF) (p<0.001, 30.36%, gav=0.95); (5) Saccades did not sig-

nificantly alter sway compared to a fixed target in any condition; There was no

interaction effect between age and condition on RMS-x.

Table 3.3: Significant p values for RMS of COP coordinate timeseries on the
ML (x ) axis in young (n = 12) and older (n = 12) females during different visual
scene conditions. D: dark, N: none, F: fixed, O: oscillating, P: pursuit, S: saccadic.

Condition D NF FF OF NP FP OP NS FS HH

NF 0.032
FF < 0.001 0.005
OF <0.001
NP 0.038
FP <0.001
OP 0.001
NS
FS 0.001

HH
OS <0.001
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AP (y) movement: There was no main effect of age on RMS-y. There was a sig-

nificant effect of condition on RMS-y (F9,198=4.372, p=0.020). This was confirmed

with a robust mixed ANOVA (p<0.001). Post-hoc comparisons revealed: (1) No

change in postural sway with a fixed target; (2) No change in postural sway with

fixed backgrounds; (3) An increase in postural sway with an oscillating background

and saccades (OS) compared to a fixed background and saccades (FS) (p=0.008,

21.77%, gav=0.78), but no other changes in postural sway with oscillating back-

grounds; (4) No change in postural sway with smooth pursuits; (5) No change

in postural sway with saccades. There was no interaction effect between age and

condition on RMS-y.

3.3.2 Gaze error

There was no significant effect of age on RMS-gaze error. There was a significant

effect of condition on RMS-gaze error (F8,186=17.629, p<0.001). This was confirmed

with a robust mixed ANOVA (p<0.001). Post-hoc comparisons revealed: (1) No

change in gaze error with fixed or oscillating backgrounds; (2) An increase in gaze

error with smooth pursuits in dark (NP) compared to a fixed target in dark (NF)

(p<0.001, 74.37% gav=1.13), smooth pursuits with a fixed background (FP) com-

pared to a fixed target with a fixed background (FF) (p=0.007, 57.4% gav=0.67),

and smooth pursuits with an oscillating background (OP) compared to a fixed target

with an oscillating background (OF) (p=0.001, 38.61%, gav=0.64); (3) An increase

in gaze error with saccades in dark (NS) compared to smooth pursuits in dark (NP)

(p=0.001, 34.22%, gav=0.98), saccades with a fixed background (FS) compared to

smooth pursuits with a fixed background (FP) (p=0.016, 23.22%, gav=0.55), and

saccades with an oscillating background (OS) compared to smooth pursuits with an
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oscillating background (OP) (p=0.001, 38.63%, gav=0.87); There was no interaction

effect between age and condition on RMS-gaze error.

3.4 Discussion

The present experiment aimed to assess the effects of eye movements on balance

in young and older adults. A novel approach was taken by assessing postural sway

during three primary occulomotor behaviours with different forms of retinal flow,

whilst simultaneously assessing gaze accuracy. Alterations of posture with different

visual conditions were found predominantly on the ML (x ) axis, with fixed stimuli

having a stabilising effect, and oscillating backgrounds and smooth pursuits having

a destabilising effect. There were no differences between age groups for any of the

posture and gaze measures.

3.4.1 Visual fixation of the stationary target

In support of extraretinal postural control, or the ability of the CNS to interpret

eye movement signals to gain positional information (Guerraz and Bronstein, 2008),

there was a decrease of postural sway when visually fixating a stationary target in

dark. Two lines of reasoning have been discussed to explain this phenomenon: the

inflow and outflow hypotheses. The former suggests that proprioceptors located in

the extraocular muscles provide information about the magnitude of eye movements,

which can be interpreted for estimates of body shifts during postural sway. This

can only occur after eye movements have been initiated. The latter suggests such

information can be gained from a copy of the motor command used to signal eye

movements, or neural outflow used by the CNS to maintain visual consistency, and
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thus the magnitude of the eye movements may be anticipated in a feed-forward

manner.

Since there were no changes to postural sway with age in these conditions, it seems

likely the older participants were able to perceive head motion relative to the target

as effectively as the young group. There were also no changes in gaze errors with age,

which indicates a similar reduction of retinal flow for both young and older adults.

Therefore, the extraretinal factors involved in the control of posture might have

been preserved. Because maintaining gaze on a fixed target requires compensatory

eye movements, initiated in part by the VOR, the present findings also suggest

that the elders had no substantial VOR deficits, which lends support to a recent

study indicating such declines are limited to individuals aged 80 years and over (Li

et al., 2015). Therefore, our suggestion that age-related declines in VOR may affect

extraretinal postural control seems not to have occurred in the present participants.

Future research should seek to examine extraretinal postural control mechanisms in

populations with known VOR deficits.

3.4.2 Fixed and oscillating backgrounds

The addition of fixed backgrounds attenuated postural sway during all eye move-

ments apart from smooth pursuits (discussed below). This reflects integration of

the static visual field and thus retinal flow into the postural control system, which

allowed for more accurate visual estimates of body position (Glasauer et al., 2005,

Laurens et al., 2010). The magnitude of gaze errors did not change, suggesting the

participants were not distracted from the visual target.

Oscillating backgrounds generating horizontally translational retinal flow absent of

parallax cues had a destabilising effect during all eye movements. Previous work
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examined coupling of postural sway to stimulus motion with frequency response

ratios (Logan et al., 2010). Strong coupling typically occurs at frequencies below 0.2

Hz, which is believed to be a result of the CNS misinterpreting external motion for

self-motion and initiating incorrect postural responses. At higher frequencies (>0.3

Hz), coupling is largely diminished (Guerraz and Bronstein, 2008). This is logical,

considering if coupling were to remain, loss of balance might ensue. Since oscillation

of the background in the present investigation was 0.33 Hz, and the participants did

not lose their balance, it is likely there was a weak or no coupling of postural sway

with the background, probably through distinguishing between retinal flow caused

by self-motion, and retinal flow caused by external motion (DeAngelis and Angelaki,

2012). Vestibular and proprioceptive signals may be of particular importance in

such a process, since they provide independent sources of information about head

and body position. Notwithstanding this, there were still increases in postural

sway. This may be attributed to more challenging integration of the non-static

retinal flow. In effect, it was likely harder to make visual estimates of body position

against the dynamic background visual field. Interestingly, this occurred even with

the stationary fixed target in the centre of the field of vision, which supports the

theory that the central area of the retina at which the fixed target would have been

located is associated more with object recognition, and the peripheral visual field

in which the oscillating background would be located is more dominant in control

of posture in moving visual fields (Piponnier et al., 2009). In this respect, it seems

the effect of the retinal flow was stronger than potential extraretinal factors which

might have been at play. There were no differences in gaze errors when oscillating

backgrounds were added, suggesting again that the participants were not distracted

from the target.

There were no differences between age groups for static or oscillating backgrounds.
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This was surprising as older individuals typically exhibit bigger postural sway when

standing in both stable visual information rich environments, such as a lit room (Pri-

eto et al., 1996) and with oscillating visual fields (Wade et al., 1995, Sundermier

et al., 1996). In the present investigation, the data was additionally normalized to

body height and body mass which have been shown to be determinants of postural

sway in females during feet together stance (Kim et al., 2010), but there were still

no changes. This suggests that the older participants integrated all of the visual

information for postural control as effectively as the young group, including deter-

mining body shifts from static and dynamic visual fields, and solving the external

motion from self-motion separation issue. We also found no differences in gaze

errors between age groups with the addition of fixed or oscillating background in-

formation. Previous findings have suggested that elders may be more distracted by

background motion, possibly related to a reduction in GABA-mediated inhibition,

and this may have consequences for discriminating motion of moving objects from

their backgrounds (Tadin and Blake, 2005). The present results do not support this

idea.

3.4.3 Smooth pursuits

Smooth pursuits increased postural sway in the absence of retinal flow. It was

suggested above that eye movement signals were used to infer body position during

fixation of the stable target with no background information (extraretinal postural

control). An increase in task complexity during smooth pursuits may complicate

such extraretinal signals, which in turn may have caused the increase in postural

sway.
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Tracking a moving target over a fixed background also increased postural sway,

yet it was predicted that the static visual field would have a stabilising effect.

One can argue that preserving stability of a given visual field on the retina is

important for accurate measurement of postural shifts (Schulmann et al., 1987).

During smooth pursuits, however, the image of the visual target may appear stable

on the fovea (Thier and Ilg, 2005), but the background visual field shifts on the

retina in the opposite direction to the target movement and might be subject to

motion blur (Schulmann et al., 1987). This may lead to more challenging conditions

for estimation of body position. This supports the notion that smooth pursuits are

good at maintaining the image of an object on the fovea, serving a central analytic

function, but they are not efficient regarding spatial orientation (Schulmann et al.,

1987).

In previous studies, the addition of a fixed background reduced the effect of moving

targets on postural sway (Glasauer et al., 2005, Laurens et al., 2010). The differ-

ences between these and the present findings could be related to the nature of the

stimulus movement. In the previous investigations, stimulus trajectory consisted

of either horizontal or vertical oscillations, which may have been easy to predict.

In the present experiment, target movement was random in the vertical, horizontal

and diagonal directions during each condition, which reflects more unpredictable

movements, more complex movement of the background visual information, and

more complex extraretinal signals. Thus, integration of retinal flow into the postu-

ral control system might have been more challenging, and this reduced the effect of

an otherwise stabilising visual anchor.

The present findings contrast with Rodrigues et al. (2015) who found a reduction of

postural sway during smooth pursuits. A potential cause lies with more challenging

foot placement strategies used in the present investigation and in Glasauer et al.
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(2005) and Laurens et al. (2010). Rodrigues et al. (2015) suggested postural sway

was attenuated to gain more accurate gaze control during normal stance. When

standing with feet together, or on foam/semi tandem stance in the previous ex-

periments, such attenuation did not occur. It seems likely, therefore, that stance

position dictates the outcome of postural response during smooth pursuits in the

presence of stable visual background information. As Rodrigues et al. (2015) did not

assess smooth pursuit movements independent of background visual information, it

cannot be inferred whether stance would have any impact in such conditions.

Surprisingly, there were no differences between age groups for balance during smooth

pursuits in any condition. It is thus possible that the older participants processed

the potentially more complex extraretinal signals and dynamic retinal flow for pos-

tural control as effectively as the young group. There were also no differences

between age groups for gaze errors. This contradicts previous results showing age-

related declines in smooth pursuit accuracy (Knox et al., 2005). It may be the Tobii

I-VT fixation filter used to process the raw gaze data, being a velocity-threshold

identifier, was not sufficiently accurate to discern small changes between the age

groups. This would require finer grained gaze data analysis such as that previously

used (Paquette and Fung, 2011). With that said, a recent study found no differ-

ence between smooth pursuit parameters of young and older adults tracking targets

in an ecologically valid environment (Dowiasch et al., 2015). It cannot ultimately

be said for sure which previous results would appropriately describe the present

participants. However, the previous suggestion that a decline in the accuracy of

the smooth pursuit system with age may affect extraretinal control of balance is

incorrect, at least in the present participants.
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3.4.4 Saccades

There were no changes in postural sway during saccades compared to fixating a

stable target in the absence of a visual background. Since in both conditions,

the target was the predominant source of visual information, one must assume a

similarity in the way it was used for postural control. This may be explained by the

frequency of the target movement (0.33 Hz). Each saccadic shift of the target was

completed at the projector refresh rate in the order of sub 20 ms. Consequently,

the target remained at the centre position, or at 6◦ of visual angle at any given

trajectory, for close to 1.5 s on each half oscillation. Since a saccadic shift of the

human eye also with a displacement of 6◦ can be completed in around 40.6 ms

(Abrams et al., 1989), gaze would have been fixated on a static target for relatively

long periods during the saccadic trials aside from corrective saccades due to gaze

errors. This suggests that similar to fixating a static target in dark, extraretinal

factors were involved in postural control. Future investigations should examine such

extraretinal contributions during saccades with a range of movement frequencies.

The addition of a fixed background did attenuate postural sway further. As sac-

cades aim to depict the visual environment as stable, e.g. to connect pre- and

post-saccadic views, and gaze would have been fixated in the same position for rel-

atively long periods, the CNS might gain better estimates of head position from the

background visual field in this condition (Schulmann et al., 1987), which seems to

have occurred in the present experiment regardless of changes in eye orientation.

The present findings do not align with previous data showing improvements in

postural stability during saccades (Rodrigues et al., 2015, Aguiar et al., 2015).

Stance position was the same as in both of these studies and thus can be excluded

as a causal factor. In these previous investigations, the authors suggested that
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postural sway was modulated to afford more accurate gaze shifts, since they found

more sway attenuation at higher frequency saccades (1.1 Hz compared to 0.5 Hz).

The frequency of saccades in the present investigation was lower at 0.33 Hz, and

may not have required the same magnitude of postural sway attenuation.

There were no differences in postural sway or gaze errors between age groups during

saccades. Therefore, the older participants may have been visually fixated on the

target for similar times as the young group, which suggests a similar amount of

positional information was successfully interpreted. This could have been through

extraretinal mechanisms, or from retinal flow. Although it is possible that the

present results failed to detect small effects of age on saccadic accuracy, such as

longer onset latencies, or more saccades to reach the target (Paquette and Fung,

2011), this certainly had no effect on the postural outcomes.

Another possible explanation as to why there were no differences for postural sway

with age during saccades and smooth pursuits relates to postural rigidity. Melzer

et al. (2001) showed that when performing a dual task whilst stood with their feet

together, elders reduced their postural sway by increasing muscle activity in the

tibialis anterior and soleus muscles. This coactivation about the ankle was thought

to be a consequence of a threat to postural stability. Other findings from older adults

also point toward increases in muscle coactivation during standing, which may be

a mechanism to compensate for natural age-related declines in the postural control

system (Nagai et al., 2011). Such a mechanism has indeed been suggested to occur

during saccadic eye movements (Aguiar et al., 2015). In the present investigation,

the older participants may have been more challenged in terms of central integration

of visual cues for postural control, and subsequently adopted a more rigid postural

response through muscle coactivation, but this was not detected through measures
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of postural sway alone. Simultaneous assessment of muscle activity would be needed

to confirm or reject this idea.

The present findings demonstrate the effects of eye movements on postural control

in young and older females. In younger males and females, similar effects have

previously been demonstrated (Glasauer et al., 2005, Laurens et al., 2010). In older

males, it can be hypothesised that the present findings would be transferable, since a

previous study which manipulated visual parameters in elders was unable to detect

significant gender differences in postural sway during quiet stance (Wolfson et al.,

1994).

3.4.5 Axis effects

The only change in posture on the AP axis was found with the addition of an oscillat-

ing background, whilst all other changes were found on the ML axis. This indicates

more stability on the AP axis compared to the ML axis overall, which likely results

from a reduced base of support on the ML axis during feet together stance compared

to normal stance. With that said, AP translations of the visual background were

not implemented during the eye movements to generate expansion and contraction

retinal flow patterns. Such conditions may have caused greater instability on AP

axis during eye movements – similar to changes in postural sway previously shown

by Jeka et al. (2008). This is a recommendation for future experiments.
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3.4.6 Method consideration

With regard to previous studies investigating postural sway during eye movements,

the participants were instructed to focus on the visual stimuli, but not directly ex-

amined as to whether they did so. The present results suggest that such instruction

is appropriate and participants are able to remain fixated on the target, aside from

natural gaze errors. Therefore, it can be suggested this set-up should continue being

used for assessment of postural sway and eye movements during quiet stance.

3.5 Conclusion

The present investigation supports growing evidence that eye movements interact

with the postural control system in humans, which could have important impli-

cations for practitioners and researchers working with a variety of populations.

Extraretinal components have been shown to contribute to postural control in a

number of laboratory conditions. Thus, if extraretinal postural control is impeded

in individuals with substantial declines in VOR and/or visual proprioceptive func-

tion, discerning the relative contribution of extraretinal and retinal mechanisms to

postural control in an ecologically valid environment and during different eye move-

ments would be an important step in developing a targeted training intervention.

Moreover, since the present investigation and other studies found increases of pos-

tural sway during smooth pursuits in more challenging stance positions, stability

whilst tracking moving targets may also be affected during locomotion or perturbed

stance. This could place populations less able to correct postural disturbances, in-

cluding elders, at a greater risk of falls. Should such individuals be instructed to

refrain from observing moving objects, thus suppressing visual tracking, and only
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utilise static fixations and saccades which maintain or improve stability to scan

their environment? Or perhaps training programs should focus on improving pos-

tural control during smooth pursuit eye movements in a variety of conditions. Some

of these points were first raised by Schulmann et al. (1987). Further research is still

needed, and should also take account of extraretinal factors. With that said, in

the present context, the older participants were able to match the younger group’s

postural and visual responses. This may be said on the cognitive level (sensory

integration of visual cues to the postural control system), and on the physical func-

tioning level (musculoskeletal responses to maintain upright stabilty). How this

translates to more dynamic situations such as locomotion now remains the topic of

interest.



The previous chapter showed that smooth pursuit eye movements can negatively

affect postural control in young and older adults during standing, whilst saccades

maintained stability. To expand on this research, the following chapter explores

the effects of smooth pursuits and saccades on balance control during locomotion

in young and older adults.
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Chapter 4

Smooth pursuits decrease balance

control during locomotion in

young and older healthy females

The work presented is this chapter arose from the following publication (see Ap-

pendix B):

Thomas, N. M., Dewhurst, S., Bampouras, T. M., Donovan, T., Macaluso, A. and

Vannozzi, G. (2017), ‘Smooth pursuits decrease balance control during locomotion

in young and older healthy females’, Experimental Brain Research, 9, 235, DOI

10.1007/s00221-017-4996-2
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4.1 Introduction

Vision provides important information for balance control during locomotion. Ex-

periments manipulating the visual field of young adult treadmill walkers, for ex-

ample, have resulted in forward and backward trunk lean (Logan et al., 2010) and

increased mediolateral (ML) trunk movement and step-width variability (Warren

et al., 1996, McAndrew et al., 2010). Step-width variability is of particular interest

as it is linked to control of the bodies centre of mass (COM) on a step-to-step basis

and is important for maintaining balance (Bauby and Kuo, 2000). These findings

were thought to result from the central nervous system (CNS) detecting changes to

the visual field and adjusting posture (albeit in error) accordingly.

Visual sensing of the external environment and self-motion within it occurs at the

retina. In a 3D world, patterns of light reflected off structures reaching the retina

create an optic array. If the observer moves, it changes the structure of the array

about a point of central observation (Gibson, 1950). Such changes in patterns of

light which flow across the retina are thought to be interpreted to estimate body

position in relation to the external environment (Warren et al., 1996, Logan et al.,

2014). However, eye movements can change the structure of the array, and flow

patterns on the retina can be a combination of those caused by self-motion in

addition to those caused by eye movements (Lappe and Hoffmann, 2000). The

CNS must, therefore, solve a source separation issue between the two when judging

self-motion (DeAngelis and Angelaki, 2012).

Despite investigations about how humans control their direction heading during eye

movements (Royden et al., 1994), studies manipulating visual flow and assessing

balance during walking have not considered eye movements. If changes to flow
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caused by eye movements affect how humans interpret retinal, it may in turn affect

balance control.

The nature of changes to balance control would likely depend on the type of eye

movement. For instance, visually fixating a stationary object straight ahead would

cause radial flow from forward progression, and this would emanate from the central

point of observation (Lappe and Hoffmann, 2000). Such flow may be considered

useful for balance control since it provides a stable reference frame (assuming a

healthy vestibulo-ocular reflex) from which self-motion with respect to the vertical

can be determined. Conversely, tracking an object in horizontal motion would cause

horizontal flow from eye rotation in addition to radial flow from forward progression.

The resulting pattern would resemble a curved movement with a shifting focus of

expansion (Lappe and Hoffmann, 2000). Moreover, although the object of fixation

would appear stabilised on the fovea, the background information would become

blurred (Schulmann et al., 1987). This added complexity may cause difficulty when

estimating self-motion, thus decreasing balance control. Saccades are another kind

of eye movement used during walking. These are rapid shifts of gaze from one

region to another (Kowler, 2011). However, because saccades are a series of fixations

separated by rapid intervals, unless the saccades were to an extreme displacement

and/or with unnaturally high frequency, the stable reference frame provided by

stationary fixations should be preserved during saccadic eye movements.

Of interest when considering the above are older adults. Elders can be more sensi-

tive to mediolateral (ML) perturbations of the visual field during walking resulting

in greater reduction of trunk stabilisation and increased step-width variability when

compared to younger adults (Franz et al., 2015). Further, it is thought the ageing

CNS relies on vision more for balance control because of vestibular and muscu-

loskeletal sensory declines (Yeh et al., 2014). Therefore, because elders cannot
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decompose retinal flow as effectively as young adults, and can be more reliant on

visual information, any decrease in balance control caused by smooth pursuits may

be more profound in this age group. Chapter 3 did show a comparable increase

in postural sway during smooth pursuits between young and older adults during

standing. However, because the biomechanical constraints and nature of visual flow

during walking are so different to standing, further investigation is warranted.

Therefore, the present investigation assessed balance control during fixation of a

fixed target, smooth pursuits and saccades in healthy young and older adults walking

overground. It was hypothesised that: (1) smooth pursuits would increase ML trunk

movement and step-width variability compared to a fixed target, (2) saccades would

maintain balance compared to a fixed target, (3) the reduced balance during smooth

pursuits would be more profound in the older adults.

4.2 Methods

4.2.1 Participants

Ten young (mean ± SD: 22.9 ± 1.5 years; 1.7 ± 0.06 m; 59.5 ± 7.2 kg) and ten

older (mean ± SD: 72.1 ± 8.2 years; 1.6 ± 0.03 m; 57.3 ± 5.6 kg) healthy females

participated in the investigation. All participants adhered to inclusion criteria de-

tailed in General methods section 2.1. All participants had an uncorrected visual

acuity (without glasses or contact lenses) ≥20/100 and were able to ambulate in

the community without visual correction.
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4.2.2 Equipment

Visual scenes were projected (Sanyo PLC-XU74, Tokyo, Japan) onto a 3.2 × 2.4 m

screen on the wall of the laboratory. A 7 × camera Vicon system (MX3, Oxford, UK,

sampling frequency 100 Hz) recorded three-dimensional positions of eight passive

reflective markers located at the left and right front and back head, C7, sacrum,

and left and right heel anatomical landmarks of each participant. A custom-made

contact mat was used to initiate visual stimulus movement (see General methods

section 2.3 and Experimental protocol section 4.2.4). Participants wore eye tracking

glasses as detailed in General methods section 2.2.

4.2.3 Visual stimuli

The visual stimulus (see General methods section 2.4) was a light blue circle dis-

played over a black background. Each participant could see the target at all times

during testing. Three experimental conditions were implemented: fixed target

(FIX), smooth pursuit (PUR) and saccade (SAC). For FIX, the target remained

in the centre of the screen at eye level. During PUR, the target displaced from

the centre of the screen in the horizontal direction to a defined threshold of vi-

sual angle (described below) before returning to the centre of the screen with a

frequency of 0.33 Hz (Laurens et al., 2010). The target moved randomly left or

right on each oscillation, which had no bearing or relation to the participants side

dominance. This choice reflects spontaneous tracking movements occurring in ev-

eryday activities (Kowler, 2011). For SAC, the same protocol was implemented.

However, the target disappeared from the centre of the screen and reappeared at

the defined threshold stimulating a saccadic eye movement, and then disappeared

and reappeared back at the centre.
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Visual stimuli were programmed in degrees of visual angle to enable standardisation

between experiments. It was considered to update the size and displacement of the

visual target relative to each participant as they progressed along the walkway. This

would have maintained a constant degree of visual angle for the size of the target,

and visual angle change for the displacement of the target. However, this would

have made the target appear to move away from the participants as they progressed

forward. In everyday life, objects do not typically reduce in size as an observer

approaches. Likewise, objects moving across a person’s field of vision, such as a

passing pedestrian, often maintain a linear heading. The magnitude of the tracking

movement is such a case is thus always dependent on how far the observer is from

the visual target. It was decided, therefore, not provide real-time adjustments. As

such, the size of the visual target relative to each participant corresponded to 1◦

at the start of the data capture area, and 2◦ at the end. The displacement of the

target (left or right) in the horizontal direction corresponded to 6◦ at the start of

the data capture area and 12◦ at the end.

4.2.4 Experimental protocol

Five trials for each condition (FIX, PUR and SAC) were completed. The conditions

were sorted randomly and segregated into 3 blocks of 5 trials. Each block was

separated by 2 min of rest. The participants walked overground on a flat level

walkway in the laboratory for 7.5 m. The walkway consisted of a 2.5 m entry area

to achieve a steady-state velocity, which has previously been recommended for older

adults (Lindemann et al., 2008), a 4 m data capture area where balance control was

assessed, and a 1 m exit area (Fig. 4.1). At least 2.5 strides of data were collected

from each participant during each trail which totalled at least 12.5 strides for each

participant in each condition. FIX was presented at the beginning of the entry
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Figure 4.1: Walkway consisting of A: entry area, B: contact mat, C: data
collection area, D: exit area, and E: projection screen. *Distance between walkway

and projection screen is not to scale.

area before the participants set off during all trials. On the first heel strike on

entering the data capture area, which was arranged to be in the first 30 cm, visual

target movement or no movement depending on the condition was initiated by the

custom-made contact mat.

Participants were instructed to fixate their gaze on the visual target at all times. If

it moved, they should follow it with their eyes only making sure not to rotate or tilt

their head. Gaze shifts of less than 15◦ are commonly achieved without rotation of

the head (Hallet, 1986), and eye movements up to 35◦ have been performed whilst

minimising head movements (Paquette and Fung, 2011). This accommodates the

maximum target displacement of 12◦ in the present investigation. Head rotations

during testing were assessed to ensure any changes in the outcome measures were

not a result of head movements corresponding to the direction of the visual target

movement.
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4.2.5 Method considerations

The visual stimuli and experimental set-up aimed to replicate as closely as possi-

ble eye movements used in everyday life and their changes to retinal flow whilst

standardising eye movement velocity and displacement. Using a virtual reality en-

vironment with 3D cues, which would generate similar retinal flow patterns as to

walking through a room, was considered. However, this would require treadmill

walking, which for reasons discussed below, was not appropriate. Instead, the 2D

visual target was projected at the wall of the laboratory, and as such there would

have been visual flow generated from the rest of the room as the participants walked

forward, e.g. from the walls running adjacent to the walkway. With regard to the

target, this just provided a visual fixation point — during a smooth pursuit it is the

background visual information (the rest of the room in the present experiment) that

becomes more difficult to interpret, and this is what has previously been suggested

to affect standing balance control (Laurens et al., 2010, Thomas et al., 2016). The

object of fixation is, therefore, not of particular concern.

With regard to locating the target at eye level and in the centre of the visual

field, although humans have been shown to fixate on points at which they will

step around a second or so before stepping on them (Patla and Vickers, 2003),

walking humans also locate their gaze centrally along the horizontal and vertical

relative to the direction heading. In other words, toward a heading point (Higuchi,

2013). Moreover, they can fixate on fixed and moving objects. One study, for

example, found that of 133 pedestrians, a walker fixated 83% of them at least once

whilst navigating a university campus (Foulsham et al., 2011). This coupled with

a previously documented visual attentional bias towards people’s faces and eyes

(Birmingham et al., 2008) suggests that gaze can be allocated at eye level in front
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of the observer, and often on moving targets, which is in line with the present

stimuli.

Finally, the number of recommended strides for assessing gait variability has ranged

between 5 and 8 to the order of hundreds whilst dual tasking in older adults (Owings

and Grabiner, 2004, Hollman et al., 2010). Additionally, separating data collection

into a series of stop-start walks as in the present experiment can increase lower-limb

variability when compared to one continuous walk (Paterson et al., 2009). How-

ever, measuring gait for long duration walking would typically require a treadmill,

which has been shown to significantly alter gait (Dingwell et al., 2001). Further,

replicating normal retinal flow patterns on a treadmill would require virtual reality.

In addition to the limited availability of such a set up, virtual reality has also been

shown to alter gait compared to normal conditions, and may even cause instability

in healthy subjects (Hollman et al., 2007). The present investigation, therefore,

placed emphasis on repeated short overground walks. First, this more closely repli-

cates everyday walking (Orendurff et al., 2008) in a more familiar way for elders

(Schellenbach et al., 2010). Second, it was important to assess immediate effects

of visual stimulus onset. In everyday life, eye movements can be initiated sponta-

neously, and objects of interest may not be observed for many continuous strides.

This was important considering the CNS can re-weight its use of vision over longer

time frames (Allison et al., 2006) and short-term effects may have gone unnoticed

during longer walks.

4.2.6 Data analysis

Raw marker data were extracted using the Biomechanical Toolkit Python bindings

(Barre and Armand, 2014) and analysed offline (see General methods section 2.5.2).
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Marker trajectories were low-pass filtered using a fourth order zero-phase Butter-

worth filter with a cutoff frequency of 10 Hz. Heel strike events were determined

based on the position of the heel marker in relation to the Sacrum marker (Zeni

et al., 2008). In short, the y coordinate of the Sacrum marker at each time frame

was subtracted from the y coordinate of each heel marker at the corresponding time

frame, and peaks in the resulting time series representing heel strikes determined.

This method has been shown to estimate overground heel strike events to within

0.0021 s of gold standard force platform measurements (Zeni et al., 2008).

4.2.7 Trunk movement

Movement of the lower and upper trunk in the ML direction was quantified as the

root mean square (RMS: see General methods section 2.5.2) of the ML component

of the C7 and Sacrum markers. Trunk lean was defined as the inclination angle of

the trunk with respect to the vertical axis, which was calculated from the inverse

tangent of the distance between the C7 and Sacrum markers in the ML axis divided

by the same distance in the vertical axis. RMS of the resulting time series was then

computed. The present experiment focused on the ML axis for trunk kinematics

as this is sensitive to the visual component of balance control (Warren et al., 1996,

McAndrew et al., 2010).

4.2.8 Lower limbs

Step-width was defined as the ML distance between heel markers at heel strike.

Mean and coefficient of variation (CV: see General methods section 2.5.2) was then

calculated for step-width across successive steps (Brach et al., 2005, McAndrew

et al., 2010, Franz et al., 2015).
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4.2.9 Head rotations

The four head markers were used to construct a head segment. Then, rotation

matrices were calculated between consecutive frames and converted to Euler angles

expressed in degrees of yaw rotation about the vertical. This corresponds to the

direction of the visual target movement. RMS of the head rotation time series was

then computed.

4.2.10 Gaze fixations

Where participants were looking in relation to the target was assessed to ensure

the protocol was completed accurately. Following export of data as detailed in

General methods section 2.2, the position of the target and the position of each

gaze fixation as x and y coordinates on the 2D video frame was determined using

a motion tracking algorithm (OpenCV Python libraries). The resultant coordinate

timeseries was then calculated (see General methods section 2.5.2).

Data before stimulus onset and at the end of the data collection area was removed

in accordance with the motion capture data. Where no gaze data were sampled to

due blinking, the target coordinate at the corresponding time frame was removed

(Thomas et al., 2016). Pearson correlation coefficients were then calculated between

the coordinate time series of the target and that of the gaze fixations, and finally

RMS of gaze subtracted from the target position (RMS gaze error) throughout each

video sequence.

Reliability of the tracking procedure used to determine the coordinates of the target

and the gaze fixations was assessed by re-tracking all of the video sequences and
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computing the CV between gaze error RMS results. A CV of 0% indicated perfect

reliability throughout.

4.2.11 Statistical analysis

The mean or median of the 5 trials for each participant in each condition was used

for statistical analysis of the relevant outcome measures depending on a normal

or non-normal distribution of the raw data. Condition (3 × visual scenes) and

age (young and older) were considered as two independent factors. The effect of

these two factors on C7 and sacrum RMS, trunk lean RMS, step-width mean and

CV, head rotation RMS, correlation coefficients between the target coordinates and

gaze fixation coordinates, and RMS gaze error, were examined with a two way

(condition × age) mixed analysis of variance (ANOVA). Post-hoc analyses included

t tests or Wilcoxon signed-rank tests with Bonferroni corrections. Where significant

differences were found (p≤0.05), Hedges’ gav effect sizes were calculated (see General

methods section 2.5.2). Common indicative thresholds for effect sizes are small (0.2),

medium (0.5) and large (0.8). Statistical results were interpreted in the context of

strength of evidence against the null hypotheses, which was determined by the

magnitude of the p values (smaller values indicate stronger evidence), magnitude of

effect sizes, and 95% confidence intervals. Statistical analyses were performed with

the R software package.
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4.3 Results

4.3.1 Trunk movement

C7 and Sacrum RMS along the ML direction are shown in Fig. 4.2. C7 RMS

showed a main effect of condition (F2,36=4.71, p=0.015). Post-hoc comparisons

revealed larger C7 RMS during PUR compared to FIX (p=0.012, gav=0.32), but

no change for SAC compared to FIX. C7 RMS showed no main effect of age or

interaction effect between condition and age.

Sacrum RMS showed a main effect of condition (F2,36=5.06, p=0.011). post-hoc

comparisons revealed larger Sacrum RMS during PUR compared to FIX (p=0.009,

gav=0.27), but no change for SAC compared to FIX. Sacrum RMS showed a main

effect of age (F1,18=5.05, p=0.037), with larger Sacrum RMS in the older group.

Sacrum RMS showed no interaction effect between condition and age.

Trunk lean RMS showed no main effect of condition or age, or any interaction effect

between condition and age.

4.3.2 Lower limbs

Mean step-width showed no main effect of condition or age, or any interaction effect

between condition and age. Step-width CV (Fig. 4.3.) showed a main effect of

condition (F2,36=4.75, p=0.049). post-hoc comparisons revealed larger step-width

CV during PUR compared to FIX (p=0.052, gav=0.39), but no change for SAC

compared to FIX. Step-width CV showed a main effect of age (F1,18=5.08, p=0.037),

with larger step-width CV in the older group. Step-width CV showed no interaction

effect between condition and age.
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(A)

(B)

Figure 4.2: A: C7, B: SACRUM RMS in the ML direction in young (n = 10) and
older (n = 10) participants during different eye movements. FIX: fixed target,
PUR: smooth pursuit, SAC: Saccade. Data are presented as means and 95%
confidence intervals in bold dots and bars, and medians and lower and upper
quartiles with Tukey style whiskers (outliers plotted separately). *Significant

difference between conditions.**Significant difference between age groups.
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Figure 4.3: Step-width CV in young (n = 10) and older (n = 10) participants
during different eye movement conditions. FIX: fixed target, PUR, smooth pur-
suit, SAC: saccade. Data are presented as means and 95% confidence intervals in
bold dots and bars, and medians and lower and upper quartiles with Tukey style
whiskers (outliers plotted separately). *Significant difference between conditions.

**Significant difference between age groups.

4.3.3 Head rotation

Head rotation showed no main effect of condition or age, or any interaction effect

between condition and age. This suggests that all participants refrained from using

head rotations in the direction of target movement.

4.3.4 Gaze variables

The correlation coefficients between the coordinate time series of the target and

the gaze fixations, and gaze error RMS showed no main effect of condition or age,

or any interaction effect between condition and age. The correlation coefficients

between the target coordinates and gaze fixation coordinates were strong (r>0.8)
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in all conditions for all participants. These results indicate all of the participants

followed instructions and completed the visual tasks aside from natural gaze errors.

4.4 Discussion

The present investigation assessed dynamic balance control during fixation of a fixed

target and smooth pursuit and saccadic eye movements in young and older healthy

females steady state walking. Smooth pursuits increased ML trunk movement and

step-width variability compared to the fixed target similarly in both age groups,

whilst there were no changes for saccades compared to the fixed target. The elders

demonstrated less baseline stability in all conditions.

The present results support the hypothesis that visually tracking a moving target

with smooth pursuits decreases balance control during walking. This was likely

related to changes in retinal flow caused by the eye movements. Processing of

retinal flow for self-motion during eye movements is thought to occur in the medial

superior temporal (MST) (Duffy and Wurtz, 1991) and ventral intraparietal (VIP)

areas of the visual cortex (Schaafsma and Duysens, 1996). These regions have

been linked to judging direction heading from retinal flow (Zhang et al., 2004), and

compensation for changes in the focus of expansion during smooth pursuits (Page

and Duffy, 1999). In the present experiment, the added complexity to retinal flow

caused by smooth pursuits would likely lead to increased processing demands within

the MST and VIP areas, and this may have reduced visual sensitivity to self-motion.

Another factor which may have contributed to decreased balance during smooth

pursuits is more complex extraretinal signals. Extraretinal signals have been shown
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to improve balance in standing humans, where small eye movements used to main-

tain gaze fixations during postural sway (initiated by the vestibulo-ocular reflex)

provide information about body position relative to the fixation point (Guerraz

and Bronstein, 2008). During locomotion, fixation of a fixed target would produce

similar signals. For example, researchers found a minimum threshold of 0.3◦ of

eye movement for 1 cm of translational head movement was useful during standing

(Guerraz and Bronstein, 2008). During locomotion, the gait cycle would induce

translation head movements meeting this threshold (Borg et al., 2015). It is thus

likely that the extraretinal component of balance control persists during walking,

and if so, it is also likely that during a smooth pursuit, the eye rotation required to

keep gaze fixated on the moving target would surpass any extraretinal signals use-

ful for balance control. This was also thought to occur during standing in previous

experiments (Laurens et al., 2010, Thomas et al., 2016).

Supporting the second hypothesis, there were no changes to balance during saccades

compared to the fixed target. Because saccades are a series of fixations separated by

rapid eye movements, and the target movement during the saccades was completed

in sub 20 ms and each saccade in 40–50 ms (Abrams et al., 1989), gaze was fixated on

a fixed target for the majority of the saccadic eye movement trials. Such conditions

likely preserved the stable reference frame similar to the fixed target. It is also

probable, therefore, that any element of extraretinal postural stabilisation was also

preserved. Even though the final displacement of the eye rotation during saccades

was the same as during smooth pursuit, the nature of eye rotation and neural control

to reach that displacement are different (Kowler, 2011). In effect, the continuing

rotation during smooth pursuits complicates extraretinal balance signals, whilst

the short rapid shifts of saccades preserve longer periods of fixation pre- and post-

saccade, and thus useful extraretinal signals.
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Contrary to the third hypothesis, the negative change to balance during smooth pur-

suits was not more profound in the older adults. This is interesting since elders have

previously been shown to have difficulties in interpreting retinal flow for self-motion

(Berard et al., 2009). However, comparing the present results with others is difficult

since there have been no studies considering eye movements and balance in walking

elders. One explanation is there was only a small effect (trunk: gav=0.32; lower

limbs: gav=0.39) of smooth pursuits on balance in both age groups. The changes to

retinal flow, therefore, may not have been profound enough to ‘challenge’ the age-

ing CNS enough to bring about a greater change. This would indicate that healthy

elders are able to process retinal flow for balance purposes during smooth pursuits

as effectively as younger adults. However, the older adults demonstrated reduced

balance throughout testing, with greater Sacrum displacement and step-width vari-

ability in all conditions. Thus, the elders were already at a disadvantage, which was

probably due to a combination of musculoskeletal and sensory deficits which are

considered normal in healthy ageing (Ambrose et al., 2013). Any further decrease

to balance such as that shown in the present experiment is, therefore, certainly un-

desirable, particularly considering that greater baseline instability indicates a higher

risk of falls (Ambrose et al., 2013).

4.5 Conclusion

The present investigation showed that smooth pursuits decrease balance control in

young and older adults. Although the change was not more profound in the older

group, elders are typically already at a postural disadvantage. Thus, further neg-

ative changes are undesirable. However, because the present results were obtained
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in a laboratory, further investigation is needed in a real-world environment older

adults are likely to use. This may offer a more direct application of the results.



The previous chapter showed that smooth pursuit eye movements can negatively

affect postural control in young and older adults during locomotion in the labora-

tory, whilst saccades maintained stability. To expand on this research, the following

chapter explores the effects of smooth pursuits and saccades on balance control in

young and older adults during locomotion in a real-world environment.
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Chapter 5

Visually fixating an indoor

pedestrian decreases balance

control in young and older healthy

females walking in a real-world

environment

The work presented is this chapter arose from the following publication (see Ap-

pendix C):

Thomas, N. M., Dewhurst, S., Donovan, T. and Bampouras, T. (2017), ‘Visually

fixating an indoor pedestrian decreases balance control in young and older healthy

females walking in a real-world environment’, Neuroscience Letters, in review (Sub-

mitted June 2017)
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5.1 Introduction

Vision helps maintain an upright posture during locomotion (Warren et al., 1996,

Logan et al., 2010). This is facilitated by changes in patterns of light intensities

caused by relative motion between an observer and their environment, which are

sensed at the retina (Gibson, 1950). Lateral trunk lean, for example, would generate

a translational flow on the retina in the opposite direction (Guerraz and Bronstein,

2008). The central nervous system uses this to estimate shifts in body position and

initiate postural adjustments.

Eye movements can affect how retinal information is used for balance control. Vi-

sually tracking a moving target with smooth pursuits increased mediolateral (ML)

trunk movement and step-width variability during walking in young and older fe-

males similarly – factors which reflect decreased stability (Chapter 4). During such

eye movements, although the target of fixation is stabilised on the fovea, the back-

ground information can be prone to blurring (Schulmann et al., 1987). This, in turn,

may make it more difficult to estimate self-motion through visual means. Previous

investigation about eye movements and balance employed targets projected in 2D

(Laurens et al., 2010, Glasauer et al., 2005). This mimics viewing of a background

scene, where focusing on the target requires similar convergence to other locations

surrounding the target (Mays, 1984). Humans often, however, fixate stationary

and moving objects located more in the foreground, such as stationary and walking

pedestrians (Foulsham et al., 2011). This requires more convergence to bring focus

to the object, which in turn causes background blurring (Sprague et al., 2016). If

the blur makes it more difficult to determine self-motion with visual information,

it may result in decreased balance control even when the object is stationary. Pre-

sumably, such an effect will be more profound when the object is moving due to
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more dynamic blurring. However, whilst a recent study assessed standing balance

during fixation of near and far light targets (Matheron et al., 2016), the authors

did not consider fixation of the background alone. Further, walking balance whilst

tracking fixed or moving objects more in the foreground has not previously been

examined.

These considerations may have important implications in older adults. Elders typ-

ically demonstrate less ‘baseline’ stability and a reduced ability to correct loss of

balance during walking (Ambrose et al., 2013), and this may place them at an

even greater risk of falls during such visual fixation tasks. Assessing elders walk-

ing balance whilst fixating static and moving objects more in the foreground may,

therefore, further understanding of risk factors of falls in elders. Moreover, conduct-

ing the experiment in a realistic setting will offer a more direct application of the

results.

The present investigation, therefore, assessed dynamic balance in young and older

adults during free gaze, and when visually tracking a standing or walking indoor

pedestrian in a real-world environment. It was hypothesised: 1) visually fixating the

standing and walking pedestrian would decrease balance control compared to free

gaze in young and older participants similarly, 2) there would be a more profound

effect whilst tracking the walking pedestrian, 3) the elders would exhibit less baseline

stability throughout.
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5.2 Methods

5.2.1 Participants

Ten young (mean ± SD: age: 23.6 ± 3.4 years, height: 1.68 ± 0.06 m, mass: 69.0

± 9.9 kg) and 10 older (mean ± SD: age: 71.0 ± 5.5 years, height: 1.61 ± 0.06

m, mass: 63.9 ± 10.3 kg) healthy females participated in the investigation. All

participants adhered to inclusion criteria detailed in General methods section 2.1.

All participants had an uncorrected visual acuity (without glasses or contact lenses)

≥20/100 and were able to ambulate in the community without visual correction.

5.2.2 Equipment

Testing was carried out on a flat walkway into a waiting room (Fig. 5.1). The

walkway consisted of a 2.5 m entry area to achieve a steady-state velocity, which

has previously been recommended for older adults (Lindemann et al., 2008), a 4 m

data capture area where dynamic balance characteristics were assessed, and a 1 m

exit area. Sliding doors concealed the waiting room from the participants when they

were at the start of the walkway. A member of the research team (pedestrian) would

be absent from or standing or walking within a standardised pedestrian area at the

far end of the waiting room (Fig. 5.2: see Experimental protocol section 5.2.3).

A custom-made contact mat (see General methods section 2.3) was used to send

a signal to a laptop informing the pedestrian when to begin walking and in which

direction (see Experimental protocol section 5.2.3). Four inertial measurement units

(IMUs: Opal, APDM, Portland, Oregon) measured accelerations of the centre front

head, sacrum, and left and right ankle anatomical land marks of each participant.

Participants wore eye tracking glasses as detailed in General methods section 2.2.
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Figure 5.1: A schematic diagram of the experimental environment. The walk-
way into the waiting room consists of A: entry area, B: contact mat, C: sliding
doors, D: data collection area, E: exit area, F: pedestrian area. All distances are

to scale.

Figure 5.2: Example of a participant’s point of view whilst walking into the
waiting room taken from the eye tracking camera. The stationary pedestrian is
present in this condition. The circle on the pedestrian represents a gaze fixation.
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5.2.3 Experimental protocol

The sliding doors were shut before each trial and then opened signalling the trial to

commence. The participants then walked straight into the room at a self-selected

pace along the length of the walkway towards the exit area. Three conditions

were implemented: free gaze (FREE), stationary pedestrian (STAT) and walking

pedestrian (WALK). For FREE, the waiting room was void of the pedestrian. For

STAT, the pedestrian stood upright and stationary in the centre of the pedestrian

area facing the participant (perpendicular to the walkway; see Fig. 5.2). For WALK,

on the first heel strike on entering the data capture area, the contact mat (beginning

at the start of the data capture area and ending 30 cm along the walkway) sent a

signal to a laptop out of view of the participant which informed the pedestrian to

begin walking and in which direction. The direction (left or right) was random on

each trial. The pedestrian walked for 1.5 m across the pedestrian area (beginning

with the lead foot which corresponded to the direction of travel) before standing

still whilst facing the same direction as in the start position (again perpendicular to

the walkway). During FREE, the participants were given no instructions where to

look. During STAT and WALK, they were informed to look at the pedestrian at all

times, and if the pedestrian moved, to track them with their eyes only making sure

not to rotate or tilt their heads. The 1.5 m threshold corresponded to 12◦ of visual

angle relative to the participants while they were at the start of the data capture

area, and 26◦ at the end. During STAT and WALK, the pedestrian was present on

door opening and was thus visible to the participants at the start of the walkway.

However, prior to door opening, the participants were blinded to the conditions in

the room.

Five trials for each condition (FREE, STAT and WALK) were completed. The
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conditions were randomly assorted and segregated into 3 blocks of 5 trials. There

was a 30 s rest period between each trial, and a 2-5 min rest period between each

block of 5 trials.

5.2.4 Data analysis

Raw data from the IMU devices (sampled at 120 Hz) were exported and analysed

offline (see General methods section 2.5.2). Raw data were filtered with a zero-lag

low-pass Butterworth filter (20Hz cuttoff). Heel strikes and mid-stance phases were

determined using the methods of Rebula et al. (2013) and Bötzel et al. (2016).

Mid-stance periods were defined as zero velocity instants, where the accelerometer

reading is close to gravitational, and the gyroscope reading small. Thresholds used

were 0.8 m/s-2 (relative to gravity) and 1.7 radians/s-1, respectively. Unusually

short stationary or swing periods (<0.133 s and <0.2 s, respectively) were excluded

as erroneously detected phases, e.g. quick foot slips during stance. Heel strikes were

defined as the lowest point of the first trough after each peak in the gyroscope pitch

axis readings (aligned with the ML axis of each participant), which was determined

using custom peak detection algorithms. All data were subsequently truncated to

the first right heel strike upon entering the data capture area, and the third left

stride mid-stance period. The sacrum acceleration readings in the IMU reference

frame were then transformed to the global reference frame by subtracting the gravity

vector from the acceleration readings. The gravity vector was obtained from Opal

proprietary orientation estimates. Standard deviation (SD) of Sacrum acceleration

in the global ML direction then defined sacrum acceleration dispersion (Huisinga

et al., 2013), which characterised balance control.
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To ensure the participants followed instructions, SD of head rotations about the

yaw axis obtained from Opal proprietary orientation estimates were calculated, in

addition to gaze fixations. Following export of the gaze data as detailed in General

methods section 2.2, a pre-trained histogram of orientated gradients combined with

a linear support vector machine model (OpenCV, Python libraries) was used to

automatically identify the pedestrian and record their coordinates on the exported

2D video frames. These were subsequently compared to the coordinates of the par-

ticipants’ gaze fixations, which were determined using a motion tracking algorithm

(openCV Python libraries). The centroid inside the bounding box surrounding the

pedestrian was used as a tracking point, which corresponds roughly to the centre of

mass of the pedestrian. Root mean square (RMS: see General methods section 2.5.2)

of gaze subtracted from the pedestrian coordinates then defined RMS gaze error,

and Pearson’s correlation coefficients between the gaze and pedestrian coordinates

defined the strength of relationship between both timeseries.

These measures of absolute error (and correlation) between the centroid of the

bounding box and the fixation locations have some limitations. For example, they do

not differentiate between fixations on the pedestrian and fixations on the background

wall, nor do they contain information about fine grained metrics such as catch-up

saccades or onset latencies. Instead, a low error (or high correlation) merely suggests

more accurate ocular following of the pedestrian. This was deemed as a sufficient

indication of whether the participants were following instructions.

5.2.5 Statistical analysis

The mean/median of the 5 trials for each participant in each condition was used

for statistical analysis of the relevant outcome measure depending on normal or
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non-normal distribution of the raw data. Condition (3 × visual scenes) and age

(young and older) were considered as 2 independent factors. The effects of these

factors on Head rotation and Sacrum SD were examined with a 2 way (condition

× age) mixed analysis of variance (ANOVA). The same model was applied to the

correlation coefficients between pedestrian and gaze fixation coordinates and RMS

gaze error, but with only STAT and WALK considered. Post-hoc analyses were t-

tests with Bonferroni corrections. Finally, where significant differences were found

(p<0.05), Hedges’ gav effect sizes were calculated (see General methods section

2.5.2). Common indicative thresholds for effect sizes are small (0.2), medium (0.5)

and large (0.8). Statistical results were interpreted in the context of strength of

evidence against the null hypotheses, which was determined by the magnitude of the

p values (smaller values indicate stronger evidence), magnitude of effect sizes, and

95% confidence intervals. Statistical analyses were performed with the R software

package.

5.3 Results

Sacrum SD in the ML direction is shown in Fig. 5.3. Sacrum SD showed a main

effect of condition (F2,36=11.81, p<0.001). Post-hoc comparisons revealed larger

Sacrum SD during STAT (p=0.006, gav=0.21) and WALK (p=0.001, gav=0.23)

compared to FREE. Sacrum SD showed no main effect of age or interaction effect

between condition and age.

Head rotation SD showed no main effect of condition or age, or any interaction effect

between condition and age. The correlation coefficients (all above 0.7) between

the pedestrian and gaze fixation coordinates and RMS gaze error showed no main

effects of condition or age, or any interaction effects between condition and age. This
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Figure 5.3: Sacrum RMS in the ML direction in young (n = 10) and older
(n = 10) females during different eye movement conditions. FREE: free gaze,
STAT: stationary pedestrian, WALK: walking pedestrian. Data are presented
as means and 95% confidence intervals in bold dots and bars, and medians and
lower and upper quartiles with Tukey style whiskers (outliers plotted separately).

*Significant difference between conditions.

suggests the participants followed instructions and tracked the pedestrian with their

eyes whilst refraining from using head rotations.

5.4 Discussion

The present investigation assessed balance control during walking in young and

older adults visually fixating an indoor pedestrian. Increases in Sacrum acceleration

dispersion were found on the ML axis when the pedestrian was standing still and

walking. There were, however, no differences between age groups.
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In support of the first hypothesis, there was an increase in sacrum acceleration dis-

persion whilst visually fixating the stationary and walking pedestrian as opposed to

free gaze in both young and older participants. This is the first experiment to show

such an effect, and in a real-world environment. The result is likely a consequence of

more complicated or blurred background retinal information generated by fixation

of the pedestrian, which made it more difficult to determine translational trunk

movements through visual information alone. In contrast to the second hypothe-

sis, there was a similar increase in sacrum acceleration dispersion during fixation

of the stationary pedestrian compared to the walking pedestrian. Since there were

no differences in gaze errors between conditions or ages, and the correlations coef-

ficients between the pedestrian and the fixation coordinates were all strong, it can

be assumed that the participants fixated the pedestrian satisfactorily in each con-

dition. Thus, it seems that the amount of blur induced by fixation of the stationary

pedestrian was sufficient to decrease balance control to the same level as when the

pedestrian was walking, even with the dynamic blurring which would have occurred

when tracking the walking pedestrian. This may be a consequence of the gait cycle

inducing various oscillatory components of retinal flow from the background infor-

mation which would be blurred due to fixation of the nearer object, even when the

object was stationary. In effect, background blur would have been dynamic when

fixating both the stationary and the walking pedestrian.

The fact there were no differences between fixation of the stationary and the walking

pedestrian raises a question as to why there was a decrease in balance control during

smooth pursuits compared to fixation of a fixed target in Chapter 4. This may

be attributed to the location of the target with respect to the background. For

example, during the free gaze condition in the present experiment, there were no

objects located in the foreground to observe, and thus, visual fixation of any point
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in the room required similar convergence to locations immediately surrounding that

point. This actually reflects both the fixation and saccadic conditions in Chapter

4, where the target was projected onto a flat screen. Fixating the pedestrian in

the present experiment better reflected the smooth pursuit condition of Chapter 4,

since that was the only condition which would have caused blurring. This is why

there was a similar increase with smooth pursuits compared to stationary fixation

in Chapter 4 (gav=0.27), and with fixation of the stationary pedestrian compared

to free gaze in the present experiment (gav=0.21).

In contrast to the third hypothesis, there was no difference in baseline sacrum ac-

celeration dispersion in the elders compared to the younger adults. Therefore, it

appears they were able to match the younger participant’s performance through-

out – processing the visual information and completing the eye movement tasks.

The elderly participants were healthy and could all ambulate within the community

without visual correction, and other older populations have been shown to exhibit

resistance to visual motion perception ageing effects due to compensatory mech-

anisms (Billino et al., 2008). Therefore, detrimental performance of visual tasks

similar to those in the present experiment may not be a necessary consequence of

ageing. With that said, the small increase in sacrum acceleration dispersion during

both fixations tasks may warrant further investigation in those at greater risk of

falling – particularly in those with vestibular/ocular dysfunction.

5.5 Conclusion

The present experiment showed that visually fixating another pedestrian can de-

crease balance control in young and older adults during locomotion. The findings

may be useful to those working with elders. It may not be unusual, for example,
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for older adults to walk into waiting room environments and fixate on other people.

Since this can negatively affect balance control, a quiet room void of people would

be more optimal for reducing fall-risk in those who are less stable. Professionals

may consider this for interventions as well as designing and maintaining areas high

fall-risk older adults are likely to use. Future research should seek to examine if

older adults adopt similar gaze fixation behaviour (i.e. fixating other people) during

free viewing in a similar real-world environment, which would help put the present

results into context.



The previous chapter showed that visually fixating a standing and walking indoor

pedestrian can negatively affect postural control in young and older adults dur-

ing locomotion. To put these findings into context, the following chapter explores

natural gaze behaviour in young and older adults during locomotion in a similar

real-world environment.
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Chapter 6

Visual sampling during

locomotion in a real-world

environment: effects of ageing and

pre-planning, and considerations

for reducing fall risk

The work presented is this chapter arose from the following publication (see Ap-

pendix D):

Thomas, N. M., Dewhurst, S., Donovan, T. and Bampouras, T. (2017), ‘Visual

sampling during locomotion in a real-world environment: effects of ageing and pre-

planning, and considerations for reducing fall risk’, Frontiers in Aging Neuroscience,

in review (Submitted October 2017)
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6.1 Introduction

Vision plays several important roles for successful locomotion. It enables pre-

planning for upcoming movements, such as a route to an intended destination (Patla,

1997), or a foot-placement location (Patla and Vickers, 2003). It facilitates online

postural adaptations, for example, modifying swing limb trajectory to accommo-

date for changing terrain (Hollands et al., 1995), and it provides a useful means to

estimate self-motion, which is important for control of balance (Logan et al., 2010)

and direction heading (Warren et al., 2001).

Visual sensing of the world and self-motion within it occurs at the retina, where

patterns of light reflected off structures in the environment are detected (Kowler,

2011). The centre of the retina – the ‘fovea’ – is the region with the highest visual

acuity, and during locomotion, this is typically directed ‘overtly’ to various regions

of the environment to extract information relevant to task demands. These can

include predictive footfall locations around one or two steps ahead (Paquette and

Vallis, 2010), potential hazards and obstacles (Chapman and Hollands, 2006), and

often toward a direction heading (Higuchi, 2013). In addition, attention can be di-

rected ‘covertly’ to features in the periphery of vision, such as trip hazards, without

the need for reorientations of gaze (Marigold and Patla, 2008). Visual self-motion

detection is facilitated, in part, by ‘retinal flow’. This refers to a change in patterns

of light intensities at the retina caused by relative motion between an observer and

their environment, about a point of central observation. Forward motion, for exam-

ple, would generate an expanding flow emanating from the centre of vision (Gibson,

1950). The central nervous system (CNS) can use this to estimate shifts in body

position and initiate postural adjustments (Guerraz and Bronstein, 2008).
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Chapters 4 and 5 demonstrated a unique interplay between the region/object of

foveal fixation and visually derived estimates of self-motion. When young and older

participants visually tracked an oscillating computer generated target, and a stand-

ing or walking actor in a real-world environment, they exhibited increased medio-

lateral trunk movement and step-width variability – factors which reflect decreased

stability. It was suggested the visual tasks generated more retinal blur surrounding

the foveal region. This would have been caused by the smooth pursuit eye move-

ment to track the moving target and the walking actor, which would also complicate

retinal flow due to the rotational eye movement, or by greater convergence to focus

on the stationary actor when compared to the background. This likely made it more

difficult to determine translational trunk movements with vision, thus reducing the

accuracy of visual postural corrections. The findings had important implications

for elders’ balance control in that any negative change to balance is undesirable in

older populations (Ambrose et al., 2013). In these studies, the participants were

instructed where to look, which was necessary to isolate the effects of the visual

tasks. What is not known is whether young or older adults would adopt similar

detrimental gaze behaviour during free viewing. Further investigation of natural

gaze behaviour in a similar real-world environment, will elucidate to whether the

decreased balance is transferable to natural gaze patterns. Another reason to assess

older adults natural gaze behaviour in such a context is that there are actually very

limited data obtained from walking elders in real-world environments. Previous

laboratory-based investigations have revealed older adults to look lower in the vi-

sual field, and to rely on foveal vision more to acquire relevant information (Itoh and

Fukuda, 2002). This has been linked to reduced visuospatial memory, slowed visual

information processing, and fear and anxiety about falling (Uiga et al., 2015, Young

et al., 2012). It is not known, however, if these results are reflected in real-world

conditions, since gaze behaviour has been shown to differ between the laboratory
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and the real world (Dowiasch et al., 2015, Foulsham et al., 2011, Zeuwts et al., 2016).

Further investigation is thus needed to bridge the gap between the laboratory and

the real world.

Another factor which has been relatively little explored in the real world is the role

of visual pre-planning. If participants are allowed to pre-scan the environment prior

to gait initiation, it would presumably allow more time to understand visuospatial

relationships. Therefore, gaze behaviour might differ to that when instructed to

walk straight away with no prior view. This may also be more profound in older

adults because of their typically slowed visual information processing (Uiga et al.,

2015). However, it is currently not known if given the opportunity, elders take

longer to pre-scan the environment or change their gaze behaviour as opposed to

being instructed to walk straight away. Laboratory-based studies which have ex-

plored gaze behaviour in elders during locomotion, for example, have instructed the

participants to look straight ahead until they set off walking, after which they are

free to look where they want (Di Fabio et al., 2001), or have had their view of the

walkway obstructed completely prior to trial commencement (Zietz and Hollands,

2009). In the present experiment, it would be beneficial to implement pre-planning

and no planning conditions. This will not only address concerns of internal and

external validity (i.e. constraining participants to either condition may affect their

natural gaze behaviour, or at the very least only tell half of the story), but will

further understanding of the role of visual pre-planning on gaze characteristics.

Investigations of gaze during locomotion typically utilise metrics such as frequency

and duration of fixations at specific regions of interest (ROI) (Foulsham et al., 2011).

Although this can provide useful information about where participants were looking

and for how long, it cannot objectively describe the sequence of events, particular

with multiple participants. A possible approach to address this, which is used in
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other areas of vision research including facial recognition (Boccignone, 2015) and

driving (Underwood et al., 2005), is Markov sequence analysis. This considers each

visual scan path (i.e. sequence of fixations at each ROI) as a deliberate sequential

process which unfolds over time, and can provide an objective overview of how

likely the participants were to fixate a certain ROI first, and how likely they were

to transfer their gaze between ROIs (Boccignone, 2015). Another advantage of

this method is that multiple scan paths can be modelled together, which is useful

when comparing data from two groups, e.g. young and older adults (Coutrot et al.,

2017). Such an approach, although not previously implemented during locomotion,

will provide a richer understanding of natural gaze behaviour.

To these ends, the present investigation assessed gaze behaviour during free-viewing

in young and older adults walking into a real-world waiting room environment with

the option to plan before entry, or walking straight in. Reflecting the conditions

of Chapter 6, the participants were presented with another standing or walking

pedestrian (herein known as ‘actor’), or a room absent of the actor. The aims were

to: 1) determine if young and older adults fixate the actor, which can equate to an

increased fall risk, 2) examine age-related changes to visual behaviour observed in

previous laboratory contexts in the real world, 3) uncover potential differences in

strategies when given the option to pre-plan a route into the room, 4) probe visual

behaviour in a novel way by implementing Markov sequence analysis.
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6.2 Methods

6.2.1 Participants

Eleven young (mean ± SD: age: 23.4 ± 3.2 years, height: 1.71 ± 0.07 m, mass:

70.8 ± 10.3 kg) and 11 older (mean ± SD: age: 70.9 ± 5.2 years, height: 1.62 ±

0.05 m, mass: 63.7 ± 9.8 kg) healthy females participated in the investigation. All

participants adhered to inclusion criteria detailed in General methods section 2.1.

All participants had an uncorrected visual acuity (without glasses or contact lenses)

≥20/100 and were able to ambulate in the community without visual correction.

6.2.2 Experimental environment

Testing was carried out on flat ground in a waiting room (Fig. 6.1). A custom-

made contact mat (see General methods section 2.3) was used to record set-off

times of each participant (see Experimental protocol 6.2.3). The entrance to the

waiting room was a well-lit hallway, which was separated from the room by opaque

sliding doors. Reflecting the conditions of Chapter 5, the actor followed standardised

pseudo-random behaviour patterns inside the waiting room, e.g. standing still or

walking a pre-defined trajectory (see Experimental protocol 6.2.3). This reflects

what might occur in a typical waiting room, such as a doctor greeting a patient.

Participants wore eye tracking glasses as detailed in General methods section 2.2.

6.2.3 Experimental protocol

The participants stood at the start position on the contact mat, which was located

behind the sliding doors (Fig. 6.1). The sliding doors were shut before each trial
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Figure 6.1: A schematic diagram of the experimental environment. A: partic-
ipants’ starting position; B: sliding doors; C: walkway; and D: actor area. All
distances are to scale. Note that the walkway outlines were not visible to the
participants, and only verbal cues were used to terminate the participants’ gait.

so the participants could not see into the waiting room. The doors then opened

signalling the trial to commence. Following this, the participants walked into the

room at a self-selected pace until verbally informed to stop when they reached a 4 m

threshold only known to the researcher. Two planning conditions were implemented:

PLAN and No PLAN. For PLAN, the participants were instructed before the trial

started to enter the room when they felt comfortable doing so after the doors had

opened. For No PLAN, they were instructed before the trial started to enter the

room as soon as the doors had opened. The time from the start of the door opening

to first heel off (gait initiation) was recorded with the contact mat. Three conditions

were implemented inside the waiting room: stationary actor (STAT), walking actor
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(WALK) and empty room (ABSENT). For STAT, the actor stood upright and

stationary in the centre of the actor area facing the participant (perpendicular to the

walkway). For WALK, The actor walked for 1.5 m across the actor area (beginning

with the lead foot which corresponded to the direction of travel) before standing still

whilst facing the same direction as in the start position (again perpendicular to the

walkway). The direction (left or right) was random on each trial. The actor set off

walking as soon as the doors had opened during STAT and WALK. For ABSENT,

the actor was absent from the waiting room.

One trial for each visual and planning condition was implemented, which totalled

6 trials per participant. The trials were performed randomly with around 30 s of

rest between them. No instructions or cues as to where to look were given to the

participants.

6.2.4 Data analysis

Following export of data as detailed in General methods section 2.2, gaze fixa-

tions were analysed in custom-made software (see General methods section 2.5.1).

Five ROIs within the room typically fixated by the participants were identified by

watching several videos from the young and older participants. These included the

background wall closely surrounding the actor, the actor, the near and far path

(near was defined as <4 m at the start of the walkway) and regions in the sur-

rounding visual area, such as the ceiling and walls running adjacent to the room

(Fig. 6.2). A fixation was considered to be on a region of interest if the region was

visible at any point within the Tobii circle (Fig. 6.2). The duration spent fixating

each ROI was then expressed as a percentage of total fixation time.
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(A) (B)

Figure 6.2: A participant’s point of view whilst walking into the room with
the actor. The red digitised lines represent the area encompassing the path and
background wall. The red Tobii circle represents a gaze fixation. Note that the
boundary used to separate the near and far path (A) did not progress with the
participant during analysis. However, due to the relatively short nature of the
walk, the participants typically averted their gaze to the actor or background
shortly after setting off. If analysing longer duration walks, it would be necessary
to move the boundary with the participant as they progressed forward. Also note
that during analysis, the researcher used real-world markers to determine the
boundaries. In other words, digitisation was not employed during the analysis.

6.2.5 Statistical analysis

To examine the effects of ageing on fixation behaviour, a 2-way robust mixed anal-

ysis of variance (ANOVA) was implemented, with age (Young × Older) and ROI

(×5) considered as between and within factors, respectively. The same model was

applied to examine the effects of planning on fixation behaviour, and again to assess

the effects of planning on set-off times, with planning (PLAN × NO PLAN) con-

sidered as a within factor. Post-hoc analyses were Wilcoxon signed-rank tests with

Bonferroni corrections. Separate analyses were conducted for each room condition

(STAT, WALK and ABSENT) with only 4 ROIs considered in ABSENT due to no

actor being present. Statistical results were interpreted in the context of strength of

evidence against the null hypotheses, which was determined by the magnitude of the

p values (smaller values indicate stronger evidence), magnitude of effect sizes, and
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95% confidence intervals. Statistical analyses were performed with the R software

package.

6.2.6 Markov sequence modelling

When considering visual scanpaths as Markov processes, fixation locations must be

defined as a ‘states’ in some context (Boccignone, 2015). Previous studies have taken

a data-driven approach to learning states using methods such as the ‘Variational

Bayesian Framework for Gaussian mixture models’ (Coutrot et al., 2017). This

can be beneficial for optimising the number of states where pre-defined regions of

interest are less clear, e.g. when examining faces. In the present investigation,

individual differences in head movement and walking speed, and a lower resolution

of the visual scene (participant walking through a room as opposed to a single

close-up image of a face) negate the applicability of such methods. Instead, each

ROI identified from the video sequences was defined as a state, which provides a

reasonable compromise between a priori definitions, e.g. dividing a face into equal

portions, and objective learning.

Probability distributions over the initial ROI fixations (reflecting where the partici-

pants looked first) and probabilities of transfers between ROIs (reflecting a saccade)

were calculated from the young and older adults scan paths using the seqHMM

package in R. This resulted in one transfer probability matrix and one set of initial

probabilities for each age group (young and old). Then, all of the observed prob-

abilities (initial fixation and transfer probabilities) were compared to a Gaussian

distribution with a binomial test (Underwood et al., 2005). The Gaussian distribu-

tion would indicate a random probability of initial fixation or shifting gaze to any

ROI to be 20% during STAT and WALK (as there are five ROIs in this condition)
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and 25% during ABSENT (as there are four ROIs in this condition). Anything

significantly different from this indicates a deliberate initial fixation or shift of gaze

as opposed to a stratified random sampling process. Probabilities which were sig-

nificant but very small (<5%) were not presented since they represent infrequent

fixations (Underwood et al., 2005).

In order to assess differences between young and older adults gaze sequence data, the

probabilities from each group (young and older) in each condition (STAT, WALK

and ABSENT) were compared with the methods of Kullback et al. (1962) using

the markovchain package in R. This approach statistically verifies whether two

sequences belong to the same unknown discrete model. If they do not, they can be

considered as describing significantly different processes.

6.3 Results

The duration of fixation on each ROI expressed as a percentage of total fixation

time for PLAN and NO PLAN during STAT is presented in Fig. 6.3. There was

no main effect of planning condition. There was, however, a significant main effect

of ROI (F4,80=94.45, p<0.001) and a significant interaction effect between age and

ROI (F4,80=2.84, p=0.045). Post-hoc analyses revealed more time spent looking at

the actor than the background (p<0.001), far path (p<0.001), near path (p<0.001)

and periphery (p<0.001). More time spent looking at the background than the

periphery (p=0.033), more time spent looking at the far path than the periphery

(p<0.001) and the near path than the periphery (p=0.008). Examination of the

interaction plot showed the young adults tended to look more at the actor than

the elders, whilst the elders tended to look more at the near path than the young

adults.
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(A)

(B)

Figure 6.3: The duration of fixation on each ROI expressed as a percentage of
total fixation time for PLAN and NO PLAN during A: STAT, and B: WALK (±
SD) in young (n = 11) and older (n = 11) females. Significant differences are

reported in the main text of the results section.
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The duration of fixation on each ROI expressed as a percentage of total fixation

time for PLAN and NO PLAN during WALK is presented in Fig. 6.3. There was

no main effect of planning condition. There was, however, a significant main effect

of ROI (F4,80=16.63, p<0.001) and a significant interaction effect between age and

ROI (F4,80= 4.34, p=0.008). In contrast to STAT, gaze was more evenly distributed

across the ROIs. Post-hoc analyses revealed more time spent looking at the actor

than the periphery (p<0.001). More time spent looking at the background than the

near path (p<0.001) and the periphery (p<0.001), and more time spent looking at

the far path than the near path (p<0.001) and the periphery (p<0.001). Analysis

of the interaction plot showed that the young adults tended to look more at the

background than the elders, whilst the elders looked more at the far path than the

young adults. The young adults also tended to look more at the actor than the

elders, whilst the elders looked more at the near path than the young adults.

The duration of fixation on each ROI expressed as a percentage of total fixation

time for PLAN and NO PLAN during ABSENT is presented in Fig. 6.4. There was

no main effect of planning condition. There was, however, a significant main effect

of ROI (F3,60=29.96, p<0.001) and a significant interaction effect between age and

ROI (F3,60=7.14, p<0.001). Post-hoc analyses revealed more time spent looking at

the background than the near path (p<0.001) and the periphery (p<0.001), and

more time spent looking at the far path than the near path (p<0.001) and the

periphery (p<0.001). Examination of the interaction plot showed the young adults

tended to look more at the background than the elders, whilst the elders tended to

look more at the far path than the young adults.

Participant set-off times for PLAN and NO PLAN during STAT, WALK and AB-

SENT are presented in Fig. 6.5. There were significant effects of planning condi-

tion for STAT (F1,20=15.69, p=0.003), WALK (F1,20=8.42, p=0.019) and ABSENT
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Figure 6.4: The duration of fixation on each ROI expressed as a percentage of
total fixation time for PLAN and NO PLAN during ABSENT (± SD) in young
(n = 11) and older (n = 11) females. Significant differences are reported in the

main text of the results section.

(F1,20=19.57, p=0.010), with longer set-off times during PLAN compared to NO

PLAN. There were no main effects of age, or any interaction effects between plan-

ning condition and age for any of the three conditions.

Markov sequence analyses were directed at age groups as opposed to planning con-

ditions since this is where the time-integrated analysis highlighted significant dif-

ferences. Sequence analyses were calculated for some of the planning data, but as

expected, the probabilities were relatively homogeneous across planning conditions.

Most infrequent probabilities under the 5% threshold were also very low in all of

the conditions, e.g. <0.1%.
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(A) (B)

(C)

Figure 6.5: Participant set-off times for PLAN and NO PLAN during A: STAT,
B: WALK, C: ABSENT, in young (n = 11) and older (n = 11) females. Data
are presented as means and 95% confidence intervals in bold dots and bars, and
medians and lower and upper quartiles with Tukey style whiskers (outliers plotted

separately). *Significant difference between conditions.
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Probability distributions over the initial ROI fixations and probabilities of transfers

between ROIs during STAT are presented in Fig. 6.6. The young and older adults’

data were confirmed to describe significantly different processes (p<0.001). The

young adults were more likely to fixate the actor first. In contrast, the older adults

were more likely to fixate the near path first. The young adults showed significant

transfers from the far path, the background and the periphery to the actor, and

from the near path to the far path. The older adults showed significant transfers

from the near path and the background to the actor, and from the near path to the

far path.

Probability distributions over the initial ROI fixations and probabilities of transfers

between ROIs during WALK are presented in Fig. 6.6. The young and older

adults’ data were confirmed to describe significantly different processes (p<0.001).

The young adults were more likely to fixate the actor first. In contrast, the older

adults were more likely to fixate the near path or the actor first. The young adults

showed significant transfers from the far path, the actor and the near path to the

background, from the near path to the far path, and from the periphery to the

background. The older adults showed significant transfers from the near path to

the far path, and from the periphery to the background, the far path, and the actor.

Probability distributions over the initial ROI fixations and probabilities of transfers

between ROIs during ABSENT are presented in Fig. 6.6. The young and older

adults’ data were confirmed to describe significantly different processes (p<0.001).

The young adults were more likely to fixate the far path and the background first.

In contrast, the older adults were more likely to fixate the near path first. The

young adults showed significant transfers from the far path, the near path and the

periphery to the background. The older adults showed significant transfers from

the near path and the periphery to the far path.
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Figure 6.6: Probability distributions over the initial ROI fixations and prob-
abilities of transfers between ROIs (presented as percentages) during ABSENT:
top, STAT: middle, and WALK: bottom, in young: left (n=11) and older: right
(n=11) females. The blue circles denote initial fixations with the correspond-
ing probability displayed underneath. The grey arrows denote transfers between
ROIs with the corresponding probability superimposed. The size of the circles
and arrows are relative to the magnitude of the probabilities. Note the bigger
circles on the actor in the young participants, and the bigger circles on the near
path in the older participants. Only probabilities significantly different from a

Gaussian distribution and >5% are displayed.
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6.4 Discussion

The present investigation assessed young and older adults’ gaze behaviour when

walking in a real-world waiting room. The young and older adults fixated the actor

for a significant period, which has been shown to be negative for balance control

(Chapter 5). The elders also initially looking down at the floor and for longer,

before looking up to their direction heading.

During STAT, the elders fixated the actor for over 70% of fixation time. The

results from Chapter 5 in this particular condition are, therefore, transferable to

natural gaze patterns. During WALK, however, total fixation time was more evenly

spread across the background and the far path. It is thus likely as the actor walked

away from the centre of the actor area, the participants stopped fixated them and

carried on looking ahead. This means the more detrimental gaze behaviour was not

continued for as long during WALK.

There was also a general trend for both the young and older adults to fixate regions

in the direction heading for the most time. These correspond to the background, the

far path and even the actor when the actor was in the centre of the actor area. These

results fall in line with previous laboratory-based studies, which show a bias of visual

attention towards a direction heading (Higuchi, 2013), which is typically associated

with the optic flow component of locomotor steering (Warren et al., 2001). This

explains why the participants ignored the actor once the actor had left the centre

of the actor area (which corresponded to the participants’ direction heading). In

addition to the heading direction, both the young and older participants fixated the

near path. This finding is also similar to laboratory-based studies, where it was

suggested that near path fixation was likely used to acquire information about the
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walkway, e.g. potential trip hazards or slippy surfaces (Uiga et al., 2015), making

this the most likely explanation for the present findings.

Of particular interest from the present findings are the interaction effects, which

begin to show differences in young and older adults’ visual behaviour. For example,

the young adults tended to look more at direction heading features (e.g. the back-

ground and actor) than the older adults, whilst the elders tended to look more at

the ground (near path and far path) than the younger adults. These findings reflect

typical behaviour in laboratory-based studies, where elders look lower in the visual

field, possibly with greater head flexion (Maslivec et al., 2017), and has previously

been related to things like reductions in visuospatial memory (Uiga et al., 2015).

In effect, the present elders may have needed to fixate the floor for longer or more

frequently to gather and retain sufficient information. Another factor might be that

the elders were less able to process peripheral visual information about the floor.

Previous studies, for example, have shown older adults to rely more on foveal vision

than covert attention (Itoh and Fukuda, 2002). Therefore, the present elders might

have fixated the walkway for longer to ensure it was safe, rather than relying on

peripheral detection of hazards. It may also be that the older adults were less con-

fident about the floor being clear of obstacles, and they ultimately checked it more

often regardless of actual threat perception. Previous studies have linked anxiety

to altered gaze behaviour (Young and Williams, 2015), for example, which certainly

lends credence to that notion. These results suggest that, at least in the present

cohort of participants, gaze behaviour found in the laboratory during locomotion

with actual body movements are reflected in the real-world.

Surprisingly, there was no effect of pre-planning on gaze behaviour. It may be

that the cognitive visuospatial mapping demands were relatively low considering

the flat and relatively easy to navigate ground in the waiting room. This was
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likely not challenging enough to warrant altered visual behaviour. It would be

interesting to examine the role of visual pre-planning over more challenging terrain.

Notwithstanding this, both the young and older adults took longer to set off when

given the opportunity to plan as opposed to being instructed to enter the room

as soon as the sliding doors had opened. This probably simply reflects the more

natural behaviour when not ‘rushed’ to set-off walking.

The present investigation probed visual behaviour during locomotion in a unique

way by considering the visual scan paths as Markov sequences. The findings add

a new perspective to the duration of fixation data. That is, the young adults were

more likely to initially fixate direction heading regions first (such as the actor and

the background), whilst the older adults were more likely to fixate the path first,

and particularly the near path. This trend was the same across all conditions with

the exception of WALK, where there is a probability for the elders to look at the

actor first as well. Subsequently, there are interesting transfers of gaze from these

initial fixation locations. Overall, the older adults were typically more likely to

look from the path to their direction heading, whilst younger adults from regions

in their direction heading to others in their direction heading. In short, the older

adults were more likely to adopt a cautious gaze strategy by checking the floor first

before looking ahead. This may be due to some of the factors mentioned above,

such as increased anxiety about the ground being clear, or more reliance on foveal

vision. It is probably not due to reduced visuospatial memory, since the initial

fixation, being the first, cannot be associated with memory in that context.

There are some limitations with the Markov sequence methods adopted in the

present investigation, in that due to the combination of only modelling 2 fixation

scan paths, some information is inevitably lost. For example, during WALK, the
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young adults must have transferred their gaze to the far path since there is a trans-

fer from this location, although there is no direct transfer from the actor (the initial

fixation location in most participants) to the far path. In these circumstances, some

inferences can be made. For example, some participants may have initially fixated

the near path, and some the actor. Then those two groups fixated the far path

together, and continued to transfer from the far path to the background. This,

however, becomes a rather drawn out process, and is mostly speculative.

When putting the present findings in the context of fall risk, the first thing to

consider is whether or not there was risky or maladaptive gaze behaviour. In both

STAT and WALK, the older adults fixated the actor for around 70% and 20% of

total fixation time, respectively. Since fixating a standing and walking actor was

shown to be detrimental to balance (Chapter 5), this fixation behaviour can be

considered undesirable, especially when the moving object is of no consequence to

the navigation route. For the initial and longer floor fixations exhibited by the older

adults, it is difficult to say whether this is negative. It may actually be beneficial

for them to check the floor first for hazards, particularly if they are less able to

correct a trip or a fall. In the context of planning, it may be suggested to be

beneficial to visually ‘absorb’ the specifics of an environment. Even though gaze

behaviour was the same across planning conditions in the present investigation,

the environment was relatively easy to navigate. More challenging surfaces may

require more planning time, and so it is likely more optimal not to rush into any

environment. This is supported by the fact both young and older adults took

longer to enter the room when given the option to plan, which reflects more natural

behaviour. One useful component of the present results is that the participants

ignored the actor after they had left the heading direction line of sight. This means

the detrimental gaze behaviour was not continued. Aside from thinking about
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training older adults to fixate other stationary locations in a direction heading, as

opposed to other people, a very simple solution would be to consider where to stand

when greeting older adults in a waiting room. Put simply, distracting an elder so

they look up to greet you would, a) reduce the likelihood they will initially floor

fixate to check for slip/trip hazards, b) reduce the efficacy of visual balance control,

and both of these would lead to increased fall risk.

6.5 Conclusion

The present experiment showed that young and older adults adopted negative gaze

behaviour by fixating the actor. The older adults were also more likely to look

down prior to setting off walking. To mitigate the negative gaze behaviour, it may

be beneficial to think about not distracting older adults when greeting them in

similar environments.



Chapter 7

General discussion

The present thesis examined the effects of eye movements on balance control in

young and older adults during standing and walking in different environments. The

rationale was derived from previous work in young adults, which showed smooth

pursuits decrease stability during standing (Laurens et al., 2010, Glasauer et al.,

2005). In contrast, saccades had been shown to maintain or improve stability dur-

ing standing (Stoffregen et al., 2006, Rodrigues et al., 2013). Yet, despite their

potential link to balance control (the negative effects of smooth pursuits and the

positive effects of saccades), and the high incidence of falls in older populations, the

effects of different eye movements on balance control had not been assessed in older

populations.

The first experimental chapter laid the foundations by exploring eye movements and

balance control during standing in young and older adults (Chapter 3). Using those

results, the research was expanded to during locomotion – first in the laboratory

(Chapter 4) and then in a real-world environment (Chapter 5). Finally, the results

of those experiments were put into context by recording natural gaze behaviour, to

106
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determine if and how the previous results were transferable to natural gaze patterns

(Chapter 6).

7.1 Smooth pursuits decrease stability

The research showed a clear link between smooth pursuit eye movements and de-

creases to balance control during standing and locomotion. This was the first time

this had been uncovered in older adults, in the laboratory or the real-world.

In Chapter 3, various background visual conditions were presented to standing

participants, e.g. static and oscillating large-field gratings, whilst they were visually

fixating a static target. This showed how retinal flow could affect stability depending

on the conditions, i.e how easy or difficult it is to interpret for balance control.

Because background retinal flow during smooth pursuits can be subject to motion

and blur, it can be considered as more difficult to interpret for balance control.

Thus, the decrease in stability during smooth pursuits was likely caused, in part,

by more complex retinal flow patterns. Indeed, this has previously been suggested

in other experiments (Glasauer et al., 2005, Laurens et al., 2010). It was also thus

likely that the decreased stability caused by smooth pursuits during locomotion in

the subsequent Chapters (4 and 5) was also a result of more difficult retinal flow

integration.

The work presented in Chapter 3 also showed how a small oscillating lit target in an

otherwise dark room increased postural sway (in the absence of retinal flow), which

highlights extraretinal balance control. Thus, more complex extraretinal signals

likely contributed to the decreased stability caused by smooth pursuits, and this

probably also occurred in the presence of retinal flow.
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Surprisingly, the older adults were not more susceptible to the effects of smooth

pursuits on balance during standing or walking. Yet, it was expected there would be

a more profound change due to typical age-related declines in the ability to interpret

retinal flow. Therefore, the older adults seemed to be able to process visual flow

or down-weight the use of unreliable visual information during the eye movements

as effectively as the younger adults. During the walking trials in Chapters 4 and 5,

this must have occurred in the first 5 s after stimulus movement onset because of

the short nature of the walks. This does fit in with some standing literature, where

older adults adapted to an initial sudden change in visual conditions within the

first 5 s similarly to younger adults (Jeka et al., 2010). Therefore, it is likely that

the smooth pursuits in the present thesis did not challenge the healthy ageing CNS

substantially to bring about a bigger reduction in stability. Another explanation

is that the elders were working harder to maintain their balance outcomes through

different muscle activation patterns as suggested in Chapter 3, but as EMG was not

used, this went undetected.

Regardless of the specific mechanisms of why there was not a more profound change

in the older adults, in Chapter 4, the older participants were already at a postu-

ral disadvantage, with lower baseline stability. Although this was not detected in

Chapter 5, likely due to the limitations of inertial measurement units, this is typical

in older adults. Therefore, the negative change to balance during smooth pursuits,

although not more profound, is certainly undesirable in older populations.

7.2 Saccades maintain stability

In Chapters 3 and 4, saccades consistently maintained balance compared to fixating

a static target. It was suggested that because the saccades were maintaining longer
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periods of fixation between the rapid eye movements, they were essentially providing

similar retinal and extraretinal signals for balance control to that when fixating the

static target. I.e. they preserved a useful visual reference frame for balance control.

This was likely also the case in Chapter 5, where the most optimal condition for

balance control was an empty room – as the participants walked through the room,

they would have initiated saccades to various regions of the environment, which was

later confirmed to be the case in Chapter 6.

7.3 Increased convergence decreases stability dur-

ing locomotion

One limitation of the first 2 experimental chapters was that the visual stimuli were

presented in two dimensions absent of depth cues. Therefore, effects of increasing

convergence to focus on objects more in the foreground were not considered. To

address this, eye movements in a real-world environment were assessed using an

actor as the visual stimulus (Chapter 5). Visually tracking the walking actor de-

creased stability, which was expected. However, there was an interesting finding

when the actor was stationary. The increased convergence required to fixate the

actor as opposed to the background wall seemed to cause a similar amount of in-

stability as when the actor was walking. This was the first time such an effect had

been shown, and was attributed to dynamic retinal background blur induced by

oscillatory movements of the head during the gait cycle.
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7.4 Natural eye movements in the real world

Because the participants were instructed where to look in Chapters 3, 4 and 5 (with

the exception of the free gaze condition in Chapter 5), which was necessary to isolate

the effects of the eye movements on balance control, it was unknown whether the

young or older adults would adopt a similar gaze pattern when given the option to

look where they wanted. To address this, natural gaze patterns were measured in

a similar real-world environment (Chapter 6). The results showed that the young

and older participants fixated the actor for around 70% of total fixation time when

they were stood in the participants’ direction heading, and around 20% of total

fixation time when the actor walked horizontally across their field of vision. Thus,

the negative gaze behaviour was exhibited in natural conditions.

The findings from Chapter 6 also demonstrated previous laboratory-based results

in the real-world for the first time. For example, the older adult typically spent

more time looking at the ground than the young adults, whilst the young adults

spent more time looking at their direction heading than the older adults. The novel

application of the Markov sequence analysis also showed unique differences in young

and older adults gaze behaviour. That is, as well as looking more at the ground,

we now know that older adults are more likely to look at the ground first before

looking ahead. It thus seems they are being more cautious.
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7.5 Practical implications for practitioners and

researchers working with older adults

The fact that smooth pursuits and increasing convergence (e.g. when fixating other

people) can decrease balance control raises some concerns given that older adults

are typically already at a postural disadvantage. That is, if they are more likely to

trip or slip due to lower baseline stability or a reduced ability to correct a postural

disturbance, any negative change to balance is undesirable. Further, since the

present thesis has shown that older adults typically do fixate other people when

walking in a waiting room environment, the small decrease in stability shown in

Chapter 5 may be common in everyday life of elders using similar rooms.

One useful piece of real-world advice stemming from this is that it would likely be

beneficial not to distract older adults when they are walking. For example, doing

so could make them look at you, and this would not be optimal for visual balance

control. Moreover, when considering that the older adults tended to look at the

ground before looking ahead (Chapter 6), distracting them would also increase the

chances of them not detecting any trip or slip hazards on the ground. This could

lead to an increased fall risk.

Another solution to mitigate the negative gaze behaviour in more cluttered and

busy environments could be to implement gaze training interventions. For exam-

ple, Schulmann et al. (1987) proposed that posturally unstable patients should be

trained to adopt fixations of static regions of the environment (either through pro-

longed fixation on one region, or with re-fixating saccades to scan the environment),

thus ignoring moving objects and the use of smooth tracking eye movements. In

Chapter 5, the condition in which older adults looked where they wanted (when
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the room was empty) fostered the most stable postural response. In this condition,

visual information would have been acquired predominantly through fixations on

static regions of the room. If older adults could be trained in the way described

by Schulmann et al. (1987), it might elicit a similar favourable outcome to Chapter

5 even in busy environments, and this might have a place in clinical populations

or those with previous experience of falls. However, there may be unintended con-

sequences associated with making elders think about where they should look. It

could increase anxiety, which has been linked to changes in postural control (Young

and Williams, 2015), and older adults may even collide with other people if they

are deliberately trying to ignore them when navigating the environment. Therefore,

the efficacy of this type of intervention would need to be evaluated before putting

it into practice.

The option of training elders to ignore other people and moving objects would also

be teaching them to foster dependency on visual fixations. This has previously

been suggested not to be optimal in patients undergoing vestibular rehabilitation

(Han et al., 2011). Instead, Han et al. (2011) suggest it may be more optimal to

train patients by watching conflicting moving visual stimuli during movements of

the head. In General introduction section 1.4.4, it was suggested that if smooth

pursuits caused a more profound change to postural control in older adults, a simi-

lar intervention could be an option. However, because smooth pursuits elicited the

same postural response in the young and older adults, it is unlikely any further

improvement would be gained by this type of training (at least in healthy older

adults). Further research is needed to confirm this for those at higher risk of falls,

or those with known vestibulo-ocular (VOR) and visual processing deficits. If im-

provements can be made in such populations, it could lay theoretical evidence for

real-world training interventions. For example, during ‘Gold Zumba’, older adults
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dance whilst watching a moving instructor at the front of the class. This could

potentially have a similar training effect, and also in combination with strength and

mobility training. On the other hand, if higher risk older adults are shown to be

at ‘too much’ risk during smooth tracking eye movements (which are used to watch

the instructor), Zumba would not be ideal since it may put them at an increased

risk of falling. This is just one idea, but the results could potentially be applied in

a range of interventions.

Another option could be to consider the design/control of waiting room environ-

ments. Because the empty room fostered the most stable response in the present

thesis (Chapter 5), a quiet and uncluttered waiting room would likely be optimal

for reducing fall risk. For smaller environments which can be controlled, it may be

useful to have a quiet sit down strategy. For example, if occupants of a waiting

room are walking around unnecessarily, it may attract older adults gaze in a neg-

ative way. Enforcing such a policy would come with its own societal and cultural

challenges, of course. In more busy environments, however, it would likely become

difficult or impossible to achieve a similar outcome, and in which case, some sort of

gaze training intervention targeted at the individual may be preferable.

The notion that tracking moving objects decreases stability has some implications

when identifying those at higher risk of falls. For example, a typical measurement

of visual balance is the Romberg Ratio, which is a simple measure of the difference

between postural control with the eyes open and the eyes closed. If higher risk older

adults become more unstable during smooth pursuits, it would theoretically be very

easy to expand on the Romberg Ratio and test for this – by instructing a patient

to watch an oscillating target (this could be a pendulum), and then measuring the

difference in balance when looking at a space fixed target. The findings could be

used to identify those at risk of falls, and refer them to a visual balance training
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intervention. It would be beneficial to collect data about normative values, so that

a smooth pursuit to balance ratio can be determined and used accurately to classify

visual balance deficits.

7.6 Limitations and Directions for future research

The present thesis has shown that fixating and tracking another person can reduce

balance control in healthy young and older adults. This is the first time this has

been shown. Consequently, the results raise a number of questions, and addressing

these could generate further impact in the fall-risk literature. One example is if and

how the reductions to balance shown in the present thesis link to actual fall-risk in

everyday life.

Fall-risk is a multifaceted phenomenon with many contributing factors. These can

be extrinsic, e.g. slippy and uneven surfaces in the environment, and intrinsic and

related directly to the individual, e.g. dizziness, muscle weakness or behaviour

(Ambrose et al., 2013). Indeed, the list is substantial. Determining the relative

contribution of eye movements to actual fall risk is thus inherently difficult. For

example, in the outside world, eye movements to track moving objects and other

people typically occur regularly, and invariably with different magnitudes and speeds

of rotation. These would also occur in tandem with other risk factors, e.g. when

crossing a road, or traversing a curbed feature. One might envisage a reduction to

balance control during a smooth pursuit to be exacerbated during a navigation goal

associated with more difficulty. Thus, a logical first step for future research could be

to incorporate a hazard avoidance task, or a dual task (e.g. reading from a moving

display) in combination with a smooth pursuit eye movement. Probing the effects of

eye movements on balance control in these conditions may shed light on reductions
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to balance control in more complex situations typically found in the outside world,

and this could link the eye movements to actual fall risk. Future studies may also

seek to address this in a range of fall risk groups, and with different levels of anxiety

and fear of falling, since these have previously been shown to be determinants of

gaze behaviour and postural control in older adults (Young and Hollands, 2010,

Young and Williams, 2015, Ambrose et al., 2013).

Moreover, the present thesis proposed a number of potential options for mitigating

the reductions to balance control during smooth pursuits. For example, to train

older adults to modify their gaze behaviour by relying on fixations and saccades,

or to become more adept at processing visual information during smooth pursuit

eye movements, and indeed for indentifying those at risk of lower balance control.

Exploring how eye movements link to fall-risk would also be important to guide

further research in these areas.

The present thesis did not explicitly test whether the extraretinal component of

balance persisted during walking. Thus, it can only suggested that more complex

extraretinal signals were a contributing factor to the decreased balance control dur-

ing locomotion. Possible techniques to address this include walking in complete

darkness whilst focusing on a small LED, or perhaps immobilising the neck using

a neck brace. Such an experiment would build a fuller picture of the physiological

effects of smooth pursuits on the balance control system. The equipment used in the

present thesis was unable to monitor very fine grained eye movements, such as onset

latency and catch-up saccades. If there are deficits in the accuracy of the smooth

pursuit/saccadic control systems in older adults in the real-world, these may link

in some way to altered balance control. Combining highly accurate eye tracking

equipment during measures of whole body movements during balancing tasks in a

real-world environment may shed light on this.
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With regard to explaining some of the results, it was difficult to say whether the

older adults were working harder to maintain the balance response by using different

muscle activation patterns. It can be suggested to use EMG to address this. How-

ever, EMG can be distracting for participants. Since it was intended to maximise

natural gait patterns, particularly in the final experimental chapters, this option

was not taken. Using EMG would, however, elucidate more to the underlying phys-

iological control mechanisms. Future studies should consider using EMG if that is

the main concern.

In previous experiments, AP optic flow perturbations led to changes in swing limb

height. Because swing limb height was not measured in the present thesis, it is

difficult to determine if any of the eye movements affected retinal flow enough to

cause similar changes. This would be recommended in future studies.

7.7 Conclusion

The overarching message from the present thesis is that fixating other indoor pedes-

trians and/or moving objects can decrease stability during locomotion, and that

young and older adults can exhibit this gaze behaviour naturally in real-world con-

ditions. Older adults are also more likely to be more cautious and look to the

ground prior to looking at their direction heading. When considering this, it is

likely beneficial not to distract older adults when they are walking, since this may

attract their gaze. This is not optimal for visual balance control, and increases

the risk of them not checking the floor for hazards – both of these may lead to an

increased risk of falls. Other strategies regarding gaze training interventions and

techniques to identify those at risk of falls with modified visual balance tests during
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smooth pursuits require further research to determine their efficacy, and particu-

larly in higher fall risk older adults. It is hoped the present findings can be used to

guide such research.
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Eye Movements Affect Postural
Control in Young and Older Females
Neil M. Thomas*, Theodoros M. Bampouras, Tim Donovan and Susan Dewhurst

Active Ageing Research Group, Department of Medical and Sport Sciences, University of Cumbria, Lancaster, UK

Visual information is used for postural stabilization in humans. However, little is known

about how eye movements prevalent in everyday life interact with the postural control

system in older individuals. Therefore, the present study assessed the effects of stationary

gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of

absent, fixed and oscillating large-field visual backgrounds to generate different forms

of retinal flow, on postural control in healthy young and older females. Participants

were presented with computer generated visual stimuli, whilst postural sway and gaze

fixations were simultaneously assessedwith a force platform and eye tracking equipment,

respectively. The results showed that fixed backgrounds and stationary gaze fixations

attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits

increased postural sway. There were no differences regarding saccades. There were

also no differences in postural sway or gaze errors between age groups in any visual

condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and

extraocular factors guide postural adjustments. The destabilizing effect of oscillating

visual backgrounds and smooth pursuits may be related to more challenging conditions

for determining body shifts from retinal flow, and more complex extraocular signals,

respectively. Because the older participants matched the young group’s performance

in all conditions, decreases of posture and gaze control during stance may not be a

direct consequence of healthy aging. Further research examining extraocular and retinal

mechanisms of balance control and the effects of eye movements, during locomotion, is

needed to better inform fall prevention interventions.

Keywords: balance, elderly, eye tracking, gaze accuracy, saccadic, smooth pursuit, visual input

1. INTRODUCTION

Vision is an important sensory cue to familiarize ourselves with the external environment,
a prerequisite for which are voluntary or involuntary eye movements, necessary to process
information such as recognition, localization and proprioception (Irwin, 1991; Lewis et al., 1994;
Donaldson, 2000). Vision also facilitates stabilization of upright posture, by enabling detection of
self-motion relative to structures in the visual field (Dichgans and Brandt, 1978). There is growing
evidence to suggest eye movements interact with this process (Schulmann et al., 1987; Glasauer
et al., 2005; Guerraz and Bronstein, 2008; Laurens et al., 2010; Rodrigues et al., 2015). However, this
has received little attention in the gerontology literature, which is surprising given the prevalence of
eye movements in everyday life (Kowler, 2011), their potential link with postural control, and the
high incidence of falls and fall related injuries amongst the elderly (Sturnieks et al., 2008; Ambrose
et al., 2013). Here our focus is on the effects of eye movements on postural control in young and
older individuals.
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Visual cues for postural stabilization have traditionally been
associated with deformation of the retinal image. As a person
shifts their position in space, changes in the pattern of light
intensities about a central point of observation create an
optic flow pattern, which is projected onto the retina. This
projected image shifts/deforms creating retinal flow according
to an individual’s movements (Gibson, 1950), which the central
nervous system (CNS) uses to estimate body position and initiate
appropriate postural adjustments (Wapner and Witkin, 1950;
Lestienne et al., 1977; Nashner and Berthoz, 1978). Optical
changes at the retina can include uniform components (e.g.,
horizontal movement of the retinal image), parallax (generated
by near and far structures in the visual environment), and
expansion and contraction (indicative of anterior or posterior
head motion; Gibson, 1950; Gibson et al., 1955). Evidence
demonstrating how retinal flow guides postural adjustments can
be taken from investigations involving moving visual surrounds,
e.g., linearly oscillating walls, floors and tunnels, which have
frequently shown a coupling of body sway with stimulus motion
(Lee and Lishman, 1975; Stoffregen, 1985; Bronstein, 1986;
Stoffregen, 1986; Flückiger and Baumberger, 1988; Dijkstra et al.,
1994). This is believed to result from the CNS misinterpreting
external-motion for self-motion and incorrectly adjusting body
orientation (Guerraz and Bronstein, 2008).

There is a close relationship between the ways in which
visual and vestibular information about head position are used
for postural control (DeAngelis and Angelaki, 2012), and eye
movements have been shown to affect posture during standing
(Paulus et al., 1984). Fixating on a small lit target in an otherwise
dark room improved stability compared to absolute dark (Paulus
et al., 1984). In these conditions, visual and vestibular initiated
compensatory eye movements in response to movements of
the head keep gaze fixated on the target, implying diminished
retinal flow. Therefore, eye movements relative to the target
are used to infer body position in space (extraocular balance
control; Guerraz and Bronstein, 2008). Visually tracking moving
targets (smooth pursuits) caused increases of postural sway in
young adults, in the presence of a static visual field and without
(Glasauer et al., 2005; Laurens et al., 2010). This may be related
to more challenging conditions for interpreting retinal flow for
postural control (Schulmann et al., 1987), or, in part, more
complex extraocular signals (Laurens et al., 2010). However, there
are data which show an opposite effect, indicating posture can
be modulated for more accurate gaze behavior (Rodrigues et al.,
2015). This concurs with similar findings during rapid shifts of
gaze from one target to another (saccades) in young (Stoffregen
et al., 2006; Rougier and Garin, 2007; Stoffregen et al., 2007;
Rodrigues et al., 2013, 2015) and older (Aguiar et al., 2015)
adults, suggesting a functional integration of gaze and posture
for both smooth pursuit and saccadic eye movements. These
differences remain unexplained. Moreover, little is known about
extraocular control of posture in elders, or how smooth pursuits
effect balance in elders.

Older individuals have demonstrated declines in visual self-
motion perception (Warren et al., 1989), and can become more
unstable in the face of moving visual surrounds (Wade et al.,
1995; Sundermier et al., 1996; Borger et al., 1998). This might

reduce their ability to interpret retinal flow for postural control
as effectively as younger adults during eye movements. Declines
in vestibulo-ocular reflex (VOR) function with age (Peterka et al.,
1990; Paige, 1991; Baloh et al., 2003) may additionally affect the
extraocular component of postural control, since the VOR is one
mechanism which serves to stabilize gaze, and eye movement
signals appear to be used to infer body position. Further, an
inaccurate smooth pursuit system in elders (Sharpe and Sylvester,
1978; Spooner et al., 1980; Moschner and Baloh, 1994; Ross
et al., 1999; Knox et al., 2005) may potentially cause less efficient
processing of more complex extraocular signals whilst visually
tracking moving targets, exacerbating the increase in postural
sway demonstrated by some young adults. Paquette and Fung
(2011) indirectly assessed balance during smooth pursuits in
older participants, but the authors focus was gaze accuracy, and
they cannot clarify if declines in postural control were associated
with the gaze outcomes.

Because loss of balance in the elderly can be costly and
debilitating (Brunner et al., 2003), there is a pressing need to
further understanding of the interplay between eye movements
and postural control in this population. Therefore, our aim
was to assess postural sway, increases of which can indicate
increased risk of falls, during visual fixation of stationary targets,
smooth pursuits and saccades, in young and older individuals.
We also used combinations of absent, fixed, and horizontally
oscillating visual backgrounds to generate different forms of
retinal flow and to isolate the extraocular factors involved in
visual control of balance. Finally, we assessed accuracy of gaze
to determine if different backgrounds altered gaze behavior, and
to examine differences in error rates between age groups. We
hypothesized: (1) fixating a stable target to reduce body sway;
(2) fixed backgrounds to have a stabilizing effect and oscillating
backgrounds to have a destabilizing effect; (3) smooth pursuits
to increase body sway; (4) saccades to decrease body sway; (5)
elders to bemore unstable throughout, with greater effects during
smooth pursuits and oscillating backgrounds; (6) gaze accuracy
to decline in the older group.

2. MATERIALS AND METHODS

2.1. Participants
Twelve young (mean ± SD: age: 26.1 ± 4.9 years, height: 1.68
± 0.06m, mass: 62.2 ± 13.7 kg) and 12 older (mean ± SD: age:
72.8 ± 6.9 years, height: 1.64 ± 0.05m, mass: 63.6 ± 10.7 kg)
females participated in the study. The older participants were
interviewed by telephone to determine suitability. An initial
cohort of 20 elders was reduced to 12 following screening by
self-report for the following inclusion criteria: (1) No macular
degeneration, glaucoma, cataracts or color blindness; (2) No
muscle or bone conditions which could prevent standing for
30 min with breaks including (but not limited to) lower limb,
hip or spine surgery within the previous year, present of recent
injury or pain in any region which could arise from standing; (3)
No psychological/neurological conditions which could prevent
observation of a visual scene or standing for 30 min with breaks
including (but not limited to) Parkinsons disease, vestibular
impairment (dizziness/vertigo), numbness or loss of sensation in

Frontiers in Aging Neuroscience | www.frontiersin.org 2 September 2016 | Volume 8 | Article 216

120



Thomas et al. Eye Movements and Postural Control

the lower limbs, or schizophrenia; (4) No severe motion sickness;
(5) No medication which could depress the nervous system or
effect balance (benzodiazepines, anti-depressants, anti-seizure,
or anti-anxiety); (6) No multiple falls within the previous year;
(7) No over-reliance on handrails when climbing the stairs; (8)
No assistive walking devices (cane, crutches, or walking frame).
Further, each older participant’s mental state was examined
with the mini mental status examination, and all achieved a
score of ≥24, considered as a minimum acceptable threshold
for involvement in the study. The investigation was carried
out in accordance with the recommendations of the University
of Cumbria’s ethical principles and guidelines for research
involving human subjects, and all procedures, information to the
participants, and participant consent forms, were approved by
the University of Cumbria Research Committee. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

2.2. Equipment
Visual scenes were rear projected (Sanyo PLC-XU74, Tokyo,
Japan) onto a 3.2× 2.4m translucent screen. The lower border of
the screen was placed at foot level. An AMTI AccuPower portable
force platform (AMTI Force andMotion, Watertown, MA, USA)
was positioned with its center 1m adjacent to the middle of the
screen. Participants wore eye tracking glasses (Tobii Glasses 2
Eye Tracker, Tobii Technology, Danderyd, Sweden) which have
a one point calibration procedure, autoparallax compensation
and slippage compensation allowing for persistent calibration
throughout testing with no loss of data aside from blinking. The
experiment was carried out in a light-controlled room.

2.3. Visual Scenes
Ten 45 s visual scenes were programmed with Psychopy
open-source psychology software (Peirce, 2007). Visual stimuli
included a red target (circle with its diameter equivalent to 3◦

of visual angle) and a large-field background (occupying the full
width and height of the screen, made up of black and white
vertical stripes each with a width equivalent to 3◦ of visual angle).
Participants had an uncorrected visual acuity ≥20/100 measured
on the day of testing. Discrimination of spatial patterns separated
by a visual angle of 50/60th of 1◦ is possible even at lower visual
acuities (Paquette and Fung, 2011). Therefore, stimuli utilized
in the present investigation were visible at all times, always
confirmed with the participant.

The target could be fixed (F), moving smoothly (P) or moving
with saccadic motion (S). When fixed, the target would remain in
the center of the screen at natural gaze height (see below). When
moving smoothly, the target would displace from the center of
the screen to 6◦ of visual angle on the vertical, horizontal or
diagonal axis before returning to the center of the screen with a
frequency of 0.33Hz. For saccadic movement the same protocol
was implemented, however, the target would disappear from the
center of the screen and reappear at the 6◦ threshold, and vice
versa. Target direction was programmed to be random on each
oscillation. The large-field background could be absent (N), fixed
(F) or oscillating horizontally (6◦ from the center position in each
left and right direction) at 0.33 Hz (O). To simulate a condition of

TABLE 1 | Letter codes denoting combinations of large-field background

and target state used to identify visual conditions.

Target

Large-field background Fixed Smooth pursuit Saccadic

None NF NP NS

Fixed FF FP FS

Oscillating OF OP OS

No large-field background or target: Dark (D)

The first letters refer to the state of the background and second refer to the state of the

visual target. Adapted from Laurens et al. (2010).

darkness (D) a black screen was projected absent of any stimuli.
Letter codes used to identify visual conditions are presented in
Table 1. Six degrees of visual angle was chosen to prevent head
rotations which could affect measures of body sway, since gaze
shifts of>15◦ are commonly are achieved without rotation of the
head (Hallet, 1986), and this method has previously been effective
in minimizing head movement (Glasauer et al., 2005; Stoffregen
et al., 2006, 2007). We also initiated target movement randomly
on the vertical, horizontal and diagonal planes to minimize any
systematic bias on one particular axis.

We used a novel approach regarding the height at which the
visual targets were presented, as opposed to eye level. Elders have
been shown to adopt forward trunk lean, which may be related
to factors such as backward disequilibrium (Manckoundia et al.,
2007) or poor balance and fear of falling (Sato and Maitland,
2008). Previous research has also shown focusing gaze at different
heights affects measures of postural sway, e.g., 25◦ up or down
from eye level decreased sway velocity and amplitude (Ustinova
and Perkins, 2011). Consequently, if the targets were presented
at eye level it may have forced the older participants to adopt an
unnatural body lean and/or gaze height in order to maintain gaze
on the target, which could have affected the results. Therefore,
prior to testing, all participants were instructed to stand as still
as possible with their feet together (no footwear) in the middle
of the force platform (position marked with a cross for accurate
relocation between trials) with their hands by their sides. They
were then told to look ahead as comfortably as possible at a visual
scene consisting of horizontal green lines (full horizontal width of
the screen, each covering 2◦ of visual angle on the vertical plane,
and each separated by 2◦). After 30 s, gaze fixation settled at a
specific line or in between lines. This was considered to be natural
gaze height. The participants were subsequently instructed to
adopt the same stance position throughout testing, which was
reiterated before each trial.

2.4. Experimental Protocol
Two practice trials of 45 s duration separated by 10–20 s
were granted following determination of natural gaze height
to familiarize the participants with measurement of postural
sway. Following a break of 2–5min testing commenced. The
participants, relocated on the cross and in the same stance as
before, were instructed to fixate their gaze on the red target.
If the target moved, they should follow it with their eyes only,
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making sure not to rotate or tilt their head. During the dark
condition, they were told to keep looking ahead. The 10 visual
scenes were displayed to each participant in a pre-determined
random order, different for each participant. After the 3rd and
7th scene the participants were granted a 3–5min break where
they sat down. In between the remaining scenes there was a 10–
20 s break where participants remained standing. A member of
the research team was present behind each participant during
testing in case of loss of balance. The eye tracking glasses were
calibrated to each participant before determining natural gaze
height, after the practice trials, and subsequently after each 3–
5min break. The calibration procedure adhered to the outlined
standardized protocol.

2.5. Force Platform Data
Force platform data were sampled at 100Hz for 45 s during
each trial and analyzed offline (Scipy, Scientific Computing Tools
for Python). Since the investigation was not concerned with
how quickly the participants adapted to new stimuli, or end
anticipation effects, the first and final 5 s were discarded, leaving
35 s of data for analysis (elders have been shown to have similar
adaptation rates to young adults regarding sudden changes in
visual stimulus motion during an initial 5 s period, Jeka et al.,
2010). Medial/lateral (x) and anterior/posterior (y) center of
pressure (COP) coordinate timeseries were then computed and
passed through a 4th order zero-lag Butterworth filter with a cut-
off frequency of 10Hz. This choice of cut-offwas determinedwith
residual analysis of the raw data (Winter, 1995).

To characterize the size of the path traveled by the COP over
the surface of support on both axis, we calculated the root mean
square (RMS) of each de-trended timeseries, where N = number
of data points and n = 1, ...,N:

RMSx,y = [1/N
∑

x, y[n]2]1/2 (1)

Rocchi et al. (2004) recommended RMS to characterize COP
coordinate timeseries following principle component analysis.
Further, repeated RMS measures of postural sway have been
shown to be reliable in young and older populations (Lin et al.,
2008).

2.6. Gaze Fixations
Gaze data (sampled at 50Hz) was filtered with the Tobii
I-VT fixation filter to yield gaze fixations (window length
20ms, threshold 30◦/s). 2D video sequences consisting of the
participants point of view of each visual scene superimposed
with their gaze fixations was exported. Position of the target
and the position of each gaze fixation as x and y coordinates
on the 2D video frame (Figure 1) was determined using motion
tracking software (Open Vision Control). Each video sequence
was optically filtered by adapting hue, saturation, brightness and
contrast, and luma space level settings in order to improve the
accuracy of the tracking algorithm. The resultant coordinate
timeseries for each was then calculated where N = number of
data points and n = 1, ...,N:

RC[n] = [x[n]2 + y[n]2]1/2 (2)

The first and final 5 s of each timeseries were removed in
concordance with the force platform data. Where no gaze data
were sampled due to blinking, the target coordinate at the
corresponding time point was converted to zero. Errors of gaze
relative to the target was then assessed by computing the RMS of
gaze subtracted from the target position throughout each video
sequence (RMS-gaze error). Reliability of the tracking procedure
was assessed by re-tracking the target and fixation position
during scene OP from the young participants and computing
the coefficient of variation (CV) between the gaze error outcome
measures from each track. Scene OP was chosen as it presented
with the most challenging optical conditions for motion tracking.
The CV between tests (0.47%) indicated excellent reliability. No
gaze data were collected for the dark (D) condition.

2.7. Statistical analysis
Age (young and older) and condition (10 × visual scenes) were
considered as two independent factors. The effects of these
two factors on the postural sway outcome variables RMS-x
and RMS-y were examined with a two-way (age × condition)
mixed analysis of variance (ANOVA). The effects of the same
independent factors minus the dark condition on the gaze
error outcome measure RMS-gaze error was also examined
with a two-way mixed ANOVA. Where our data departed from
normality, main effects were cross checked with a robust mixed
ANOVA based on modified M-estimators and bootstrapping
(Field et al., 2012). Post-hoc analyses (t-tests or Wilcoxon
signed-rank tests) with Benjamini-Hochberg corrections were
used where applicable. Where significant differences were found
between conditions (p < 0.05), Hedges’s gav effect sizes were
calculated as given by Lakens (2013). Common indicative effect
thresholds for which include small (0.2), medium (0.5), and large
(0.8), respectively.

3. RESULTS

3.1. Postural Sway
RMS of the COP coordinate timeseries on the medial/lateral (x)
and anterior/posterior (y) axis for young and older participants
are presented in Tables 2, 3 and Figure 2.

3.1.1. Medial/Lateral (x) Movement

There was nomain effect of age on RMS-x. There was a significant
main effect of condition on RMS-x [F(1, 198) = 17.769, p< 0.001].
This was confirmed with a robust mixed ANOVA (p < 0.001).
Post-hoc comparisons revealed: (1) A reduction of postural sway
with a fixed target in dark (NF) compared to dark alone (D;
p = 0.032, 12.75%, gav = 0.40); (2) A reduction of postural
sway with a fixed background and a fixed target (FF) compared
to dark alone (D; p < 0.001, 27.18%, gav = 0.96), compared
to a fixed target in dark (NF; p = 0.005, 16.54%, gav = 0.63),
and a reduction of postural sway with a fixed background and
saccades (FS) compared to saccades in dark (NS; p = 0.001,
17.68%, gav = 0.66); (3) An increase in postural sway with an
oscillating background and a fixed target (OF) compared to a
fixed background and a fixed target (FF; p < 0.001, 48.20%,
gav = 1.16), an oscillating background and smooth pursuits (OP)
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FIGURE 1 | Representation of target trajectory and gaze fixations from 1 participant: (A) during smooth pursuits; (B) during saccades. Coordinates

along each axis were taken from the 2D video scene relative to the observer and represent arbitrary units (a.u.). Note that the target position is not stable due to the

body sway of the observer. Also note the errors of the fixations compared to the target locations.

TABLE 2 | RMS of COP coordinate timeseries on the medial/lateral (x) axis

in young (n = 12) and older (n = 12) participants during different visual

scene conditions.

RMS-x (mm)

Condition Young Older

D 4.95 ± 1.68 4.70 ± 1.73

NF 4.43 ± 1.39 3.99 ± 1.11

FF 3.44 ± 1.08 3.58 ± 0.55

OF 5.69 ± 1.89 4.72 ± 1.64

NP 5.06 ± 1.21 4.85 ± 1.43

FP 4.82 ± 1.56 4.33 ± 0.92

OP 5.81 ± 1.96 5.36 ± 1.76

NS 4.59 ± 1.62 4.01 ± 0.85

FS 3.63 ± 0.79 3.46 ± 1.03

OS 6.32 ± 2.31 5.09 ± 2.28

D, dark; N, none; F, fixed; O, oscillating; P, pursuit; S, saccadic.

compared to a fixed background and smooth pursuits (FP; p =

0.001, 22.03%, gav = 0.62), and an oscillating background and
saccades (OS) compared to a fixed background and saccades
(FS; p < 0.001, 60.91%, gav = 1.18); (4) An increase in postural
sway with smooth pursuits in dark (NP) compared to a fixed
target in dark (NF; p = 0.038, 17.85%, gav = 0.57), and smooth
pursuits with a fixed background (FP) compared to a fixed target
with a fixed background (FF; p < 0.001, 30.36%, gav = 0.95);
(5) Saccades did not significantly alter sway compared to a fixed
target in any condition; There was no interaction effect between
age and condition on RMS-x.

3.1.2. Anterior/Posterior (y) Movement

There was nomain effect of age on RMS-y. There was a significant
effect of condition on RMS-y [F(1, 198) = 4.372, p = 0.020].
This was confirmed with a robust mixed ANOVA (p < 0.001).
Post-hoc comparisons revealed: (1) No change in postural sway

TABLE 3 | RMS of COP coordinate timeseries on the anterior/posterior (y)

axis in young (n = 12) and older (n = 12) participants during different

visual scene conditions.

RMS-y (mm)

Condition Young Older

D 5.66 ± 1.78 5.22 ± 1.75

NF 4.79 ± 1.70 4.67 ± 1.27

FF 5.18 ± 2.39 4.78 ± 1.30

OF 4.99 ± 1.52 4.68 ± 0.95

NP 5.89 ± 2.15 5.14 ± 2.00

FP 4.78 ± 1.23 4.94 ± 0.89

OP 5.66 ± 1.84 5.44 ± 1.42

NS 4.80 ± 1.29 4.41 ± 0.73

FS 3.97 ± 1.11 4.26 ± 1.12

OS 4.89 ± 0.94 5.13 ± 1.30

D, dark; N, none; F, fixed; O, oscillating; P, pursuit; S, saccadic.

with a fixed target; (2) No change in postural sway with fixed
backgrounds; (3) An increase in postural sway with an oscillating
background and saccades (OS) compared to a fixed background
and saccades (FS; p = 0.008, 21.77%, gav = 0.78), but no other
changes in postural sway with oscillating backgrounds; (4) No
change in postural sway with smooth pursuits; (5) No change
in postural sway with saccades. There was no interaction effect
between age and condition on RMS-y.

3.2. Gaze error
RMS of gaze subtracted from target position for young and old
participants is presented in Table 4 and Figure 3. There was
no significant effect of age on RMS-gaze error. There was a
significant effect of condition on RMS-gaze error [F(1, 186) =

17.629, p < 0.001]. This was confirmed with a robust mixed
ANOVA (p < 0.001). Post-hoc comparisons revealed: (1) No
change in gaze error with fixed or oscillating backgrounds; (2)
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FIGURE 2 | RMS of COP coordinate timeseries: (A) on the medial/lateral (x) axis; (B) on the anterior/posterior (y) axis in young (n = 12) and older (n =

12) participants during different visual scene conditions. D, dark; N, none; F, fixed; O, oscillating; P, pursuit; S, saccadic. Data are displayed as medians and

lower and upper quartiles with Tukey style whiskers (outliers plotted separately).

An increase in gaze error with smooth pursuits in dark (NP)
compared to a fixed target in dark (NF; p < 0.001, 74.37% gav =
1.13), smooth pursuits with a fixed background (FP) compared to
a fixed target with a fixed background (FF; p= 0.007, 57.4% gav =
0.67), and smooth pursuits with an oscillating background (OP)
compared to a fixed target with an oscillating background (OF;
p= 0.001, 38.61%, gav = 0.64); (3) An increase in gaze error with
saccades in dark (NS) compared to smooth pursuits in dark (NP;
p= 0.001, 34.22%, gav = 0.98), saccades with a fixed background
(FS) compared to smooth pursuits with a fixed background
(FP; p = 0.016, 23.22%, gav = 0.55), and saccades with an
oscillating background (OS) compared to smooth pursuits with
an oscillating background (OP; p = 0.001, 38.63%, gav = 0.87);
There was no interaction effect between age and condition on
RMS-gaze error.

4. DISCUSSION

The present work aimed to assess the effects of eye movements
on balance in young and older individuals. We took a novel
approach by assessing postural sway during three primary
occulomotor behaviors with different forms of retinal flow, whilst
simultaneously assessing gaze accuracy. Alterations of posture
with different visual conditions were found predominantly on
the medial/lateral (x) axis, with fixed stimuli having a stabilizing
effect, and oscillating backgrounds and smooth pursuits having a
destabilizing effect. There were no differences between age groups
for any of the posture and gaze measures. The underpinning
mechanisms and potential causes are discussed.

4.1. Visual Fixation of a Stationary Target
In support of extraocular postural control, or the ability of
the CNS to interpret eye movement signals to gain positional
information (Guerraz and Bronstein, 2008), we found a decrease
of body sway when visually fixating a stationary target in dark.

Two lines of reasoning have been discussed to explain this
phenomenon; the inflow and outflow hypotheses. The former
suggests that proprioceptors located in the extraocular muscles
provide information about the magnitude of eye movements,
which can be interpreted for estimates of body shifts during
postural sway. This can only occur after eye movements have
been initiated. The latter suggests such information can be
gained from a copy of the motor command used to signal eye
movements, or neural outflow used by the CNS tomaintain visual
consistency, and thus the magnitude of the eye movements may
be anticipated in a feed forward manner.

Since there were no changes in postural sway with age in
this condition, it seems likely the older participants were able
to perceive head motion relative to the target as effectively as
the young group. There were also no changes in gaze errors
with age, which indicates a similar reduction of retinal flow for
both young and older. Therefore, the extraocular factors involved
in the control of posture might have been preserved. Because
maintaining gaze on a fixed target requires compensatory eye
movements, initiated in part by the VOR, the present findings
also suggest that the elders had no substantial VOR deficits,
which lends support to a recent study indicating such declines
are limited to individuals aged 80 years and over (Li et al.,
2015). To this point, our suggestion that age-related declines
in VOR may affect extraocular balance control seems not to
have occurred in our participants. Future research should seek to
examine extraocular postural control mechanisms in populations
with known VOR deficits.

4.2. Fixed and Oscillating Backgrounds
The addition of fixed backgrounds attenuated postural sway
during all eye movements apart from smooth pursuits (discussed
below). This reflects integration of the static visual field, and
thus retinal flow, into the postural control system, allowing for
more accurate visual estimates of body position (Glasauer et al.,
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2005; Laurens et al., 2010). The magnitude of gaze errors did not
change, suggesting the participants were not distracted from the
visual target.

Oscillating backgrounds generating horizontally translational
retinal flow absent of parallax cues had a destabilizing effect
during all eye movements. Previous work examined coupling
of postural sway to stimulus motion with frequency response
ratios (Logan et al., 2010). Strong coupling typically occurs
at frequencies below 0.2Hz, which is believed to be a
result of the CNS misinterpreting external-motion for self-
motion and initiating incorrect postural responses. At higher
frequencies (>0.3Hz), coupling is largely diminished (Guerraz
and Bronstein, 2008). This is logical, considering if coupling were
to remain, loss of balance might ensue. Since oscillation of the
background in the present study was 0.33Hz, and the participants
did not lose their balance, it is likely there was a weak or no
coupling of body sway with the background, probably through
distinguishing between retinal flow caused by self-motion, and
retinal flow caused by external-motion (DeAngelis and Angelaki,
2012). Vestibular and proprioceptive signals may be of particular
importance in such a process, since they provide independent
sources of information about head and body position in space
(DeAngelis and Angelaki, 2012). Notwithstanding this, there
were still increases in postural sway. This may be attributed
to more challenging integration of the non-static retinal flow.
In effect, it was likely harder to make visual estimates of
body position against the dynamic background visual field.
Interestingly, this occurred even with the stationary fixed target
in the center of the field of vision, which supports the theory
that the central area of the retina at which the fixed target would
have been located is associated more with object recognition
(Guerraz and Bronstein, 2008), and the peripheral visual field
in which the oscillating background would be located is more
dominant in control of posture inmoving visual fields (Piponnier
et al., 2009). In this respect, it seems the effect of the retinal
flow was stronger than potential extraocular factors which might
have been at play. There were no differences in gaze errors when
oscillating backgrounds were added, suggesting again that the
participants were not distracted from the target.

We found no differences between age groups for static or
oscillating backgrounds. This was surprising as older individuals
typically demonstrate greater body sway when standing in both
stable visual information rich environments, such as a lit room,
(Prieto et al., 1996) and in oscillating visual fields (Wade et al.,
1995; Sundermier et al., 1996; Borger et al., 1998).We normalized
the data to body height and body mass which have been shown
to be determinants of postural sway in females during feet
together stance (Kim et al., 2010) but were still unable to find any
changes. This suggests that the older participants integrated all
of the visual information for postural control as effectively as the
young group, including determining body shifts from static and
dynamic visual fields, and solving the external-motion from self-
motion separation issue. We also found no differences in gaze
errors between age groups with the addition of fixed or oscillating
background information. Previous findings have suggested that
elders may be more distracted by background motion, possibly
related to a reduction in GABA-mediated inhibition, and this

TABLE 4 | RMS of gaze subtracted from target position (in arbitrary units)

for young (n = 12) and older (n = 12) participants during different visual

scene conditions.

RMS-gaze error (a.u.)

Condition Young Older

NF 10.33 ± 9.35 13.06 ± 6.32

FF 10.63 ± 8.97 16.98 ± 14.23

OF 12.90 ± 7.76 14.91 ± 8.77

NP 20.85 ± 5.82 19.94 ± 8.13

FP 21.73 ± 9.38 21.74 ± 12.34

OP 18.11 ± 6.61 20.44 ± 9.44

NS 25.96 ± 6.69 28.78 ± 7.09

FS 25.16 ± 5.40 28.39 ± 7.50

OS 22.87 ± 5.29 30.58 ± 9.55

D, dark; N, none; F, fixed; O, oscillating, P, pursuit; S, saccadic.

FIGURE 3 | RMS of gaze subtracted from target position for young (n =

12) and older (n = 12) participants during different visual scene

conditions. D, dark; N, none; F, fixed; O, oscillating; P, pursuit; S, saccadic.

Data are displayed as medians and lower and upper quartiles with Tukey style

whiskers (outliers plotted seperately).

may have consequences for discriminating motion of moving
objects from their backgrounds (Tadin and Blake, 2005). The
present results do not support this idea.

4.3. Smooth Pursuits
Smooth pursuits increased postural sway in the absence of
retinal flow. We suggested above that eye movement signals were
used to infer body position during fixation of a stable target
with no background information (extraocular balance control).
An increase in task complexity during smooth pursuits may
complicate such extraocular signals, which in turn may have
caused the increase in postural sway. The neural basis of these
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findings goes beyond the scope of this investigation, but might be
related to the factors previously outlined.

Tracking a moving target over a fixed background also
increased postural sway, yet we predicted the static visual field
would have a stabilizing effect. One can argue that preserving
stability of a given visual field on the retina is important for
accurate measurement of postural shifts (Schulmann et al.,
1987). During smooth pursuits, however, the image of the visual
target may appear stable on the fovea (Thier and Ilg, 2005),
but the background visual field shifts on the retina in the
opposite direction to the target movement (Schulmann et al.,
1987). This would generate similar retinal flow patterns to an
oscillating background visual field, which may in turn lead to
more challenging conditions for estimation of body position.
Such results also support the notion that whilst smooth pursuits
are good at maintaining the image of an object on the fovea,
subserving a central analytical function, they are not efficient
regarding spatial orientation, due to apparent motion of the
background in the peripheral visual field (Schulmann et al.,
1987).

In the previous experiments, the addition of a fixed
background reduced the effect of the moving target on postural
sway (Glasauer et al., 2005; Laurens et al., 2010). The differences
between these and the present findings could be related to the
nature of the stimulus movement. In the previous investigations,
stimulus trajectory consisted of either horizontal, or vertical
oscillations, which may have been easy to predict. In the
present experiment, target movement was random on the
vertical, horizontal and diagonal axis during each condition
reflecting more unpredictability, more complex movement of the
background visual information, and more complex extraocular
signals. Thus, integration of retinal flow into the postural control
system might have been more challenging, and this reduced the
effect of an otherwise stabilizing visual anchor.

Our findings contrast with Rodrigues et al. (2015) who found
a reduction of body sway during smooth pursuits. A potential
cause lies withmore challenging foot placement strategies used in
the present investigation (and in Laurens et al., 2010 andGlasauer
et al., 2005). Rodrigues et al. (2015) suggested postural sway was
attenuated to gain more accurate gaze control during normal
stance. When standing with feet together, or on foam/semi
tandem stance in the previous experiments, such attenuation
did not occur. It seems likely, therefore, that stance position
dictates the outcome of postural response during smooth
pursuits in the presence of stable visual background information.
As Rodrigues et al. (2015) did not assess smooth pursuit
movements independent of background visual information, it
cannot be inferred whether stance would have any impact in such
conditions.

Surprisingly, there were no differences between age groups
for balance during smooth pursuits in any condition. It is thus
possible that the older participants processed the potentially
more complex extraocular signals, and dynamic retinal flow
for postural control as efficiently as the young group. We
also found no differences between age groups for gaze errors.
This contradicts previous results showing age-related declines in
smooth pursuit accuracy (Sharpe and Sylvester, 1978; Spooner

et al., 1980; Moschner and Baloh, 1994; Ross et al., 1999; Knox
et al., 2005). It may be the Tobii I-VT fixation filter we used to
process the raw gaze data being a velocity-threshold identifier
was not sufficiently accurate to discern small changes between the
age groups which would require finer grained gaze data analysis
such as that previously used Paquette and Fung (2011). With
that said, a recent study found no difference between smooth
pursuit parameters of young and older adults tracking targets
in an ecologically valid environment (Dowiasch et al., 2015).
We cannot ultimately say for sure which previous results would
appropriately describe our participants. However, our previous
suggestion that a decline in the accuracy of the smooth pursuit
system with age may affect extraocular control of balance is
incorrect, at least in our participants.

4.4. Saccades
We found no changes in postural sway during saccades compared
to fixating a stable target in the absence of a visual background.
Since in both conditions, the target was the predominant source
of visual information, one must assume a similarity in the way
it was used for postural control. This may be explained by the
frequency of the target movement (0.33Hz). Each saccadic shift
of the target was completed at the projector refresh rate, in the
order of sub 20ms. Consequently, the target remained at the
center position, or at 6◦ of visual angle at any given trajectory,
for close to 1.5 s on each half oscillation. Since a saccadic shift of
the human eye also with a displacement of 6◦ can be completed
in around 40.6 ms (Abrams et al., 1989), gaze would have been
fixated on a static target for relatively long periods during the
saccadic trials aside from corrective saccades due to gaze errors.
This suggests that similar to fixating a static target in dark,
extraocular factors were involved in balance control. Future
investigations should examine such extraocular contributions,
during saccades with a range of movement frequencies.

The addition of a fixed background did attenuate postural
sway further. As saccades aim to depict the visual environment
as stable, e.g., to connect pre- and post-saccadic views, and
gaze would have been fixated in the same position for relatively
long periods, as above, the CNS might gain better estimates of
head position from the background visual field in this condition
(Schulmann et al., 1987), which seems to have occurred in our
experiment regardless of changes in eye orientation.

The present findings do not align with previous data showing
improvements in upright stability during saccades (Rodrigues
et al., 2013, 2015; Aguiar et al., 2015). Stance position was the
same as in Aguiar et al. (2015) and Rodrigues et al. (2013)
and thus can be excluded as a causal factor. In these previous
investigations, the authors suggested that postural sway was
modulated to afford more accurate gaze shifts, since they found
more sway attenuation at higher frequency saccades (1.1Hz
compared to 0.5Hz). The frequency of saccades in the present
investigation was lower at 0.33Hz, and may not have required
the same magnitude of postural sway attenuation.

We additionally found no differences in postural sway or
gaze error between age groups during saccades. Therefore,
the older participants may have been visually fixated on the
target for similar time scales as the young group, suggesting a
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similar amount of positional information was interpreted, either
extraocular or from retinal flow. Although it is possible that we
failed to detect small effects of age on saccadic accuracy, such
as longer onset latencies, or more saccades to reach the target
(Paquette and Fung, 2011), this certainly had no effect on the
postural outcomes.

Another possible explanation as to why we found no
differences for postural sway with age during saccades and
smooth pursuits relates to rigidity. Melzer et al. (2001) showed
that when performing a dual task whilst stood with their
feet together, elders reduced their body sway by increasing
muscle activity in the tibialis anterior and soleus muscles. This
coactivation about the ankle was thought to be a consequence
of a threat to postural stability. Other findings from older
individuals also point toward increases in muscle coactivation
during standing, which may be a mechanism to compensate
for natural age-related declines in the postural control system
(Nagai et al., 2011). Such a mechanism has indeed been suggested
to occur during saccadic eye movements (Aguiar et al., 2015).
In the present study, the older participants may have been
more challenged in terms of central integration of visual cues
for postural control, and subsequently adopted a more rigid
postural response through muscle coactivation, but this was not
detected through measures of postural sway alone. Simultaneous
assessment of muscle activity would be needed to confirm or
reject this idea.

The present findings demonstrate the effects of eye
movements on postural control in young and older females.
In younger males and females, similar effects have previously
been demonstrated (Glasauer et al., 2005; Laurens et al., 2010).
In older males, we hypothesize that our findings would be
replicated, since a previous study which manipulated visual
parameters, in elders, was unable to detect significant gender
differences in postural sway during quiet stance (Wolfson et al.,
1994).

4.5. Axis Effects
The only change in posture on the anterior/posterior (y) axis
was found with the addition of an oscillating background, whilst
all other changes were found on the medial/lateral (x) axis.
This indicates more stability on the anterior/posterior (y) axis
compared to the medial/lateral (x) axis overall, which likely
results from a reduced base of support on the medial/lateral (x)
axis during feet together stance compared to normal stance. With
that said, we did not utilize anterior/posterior (y) translations
of the visual background during the eye movements to generate
expansion and contraction retinal deformation patterns. Such
conditions may have caused greater instability on this particular
axis during eye movements, similar to changes in postural sway
previously shown by Jeka et al. (2008). This is a recommendation
for future experiments.

4.6. Method Consideration
With regard to previous studies investigating postural sway
during eye movements, the participants were instructed to focus
on the visual stimuli, but not directly examined as to whether
they did so. The present results suggest that such instruction is

appropriate and participants are able to remain fixated on the
target, aside from natural gaze errors. Therefore, we suggest this
set-up should continue being used for assessment of postural
sway and eye movements during quiet stance.

4.7. Conclusion
The present investigation supports growing evidence that eye
movements interact with the postural control system in humans,
which could have important implications for practitioners and
researchers working with a variety of populations. Extraocular
components have been shown to contribute to postural control in
a number of laboratory conditions. Thus, if extraocular balance
control is impeded in individuals with substantial declines
in VOR and/or visual proprioceptive function, discerning the
relative contribution of extraocular and retinal mechanisms
to balance control in an ecologically valid environment and
during different eye movements would be an important step in
developing a targeted training intervention. Moreover, since we
and other studies found increases of postural sway during smooth
pursuits in more challenging stance positions, stability whilst
tracking moving targets may also be affected during locomotion
or perturbed stance. This could place populations less able to
correct postural disturbances, including elders, at a greater risk
of falls. Should such individuals be instructed to refrain from
observing moving objects, thus suppressing visual tracking, and
only utilize static fixations and saccades which maintain or
improve stability to scan their environment? Or perhaps training
programs should focus on improving postural control during
smooth pursuit eye movements in a variety of conditions. Some
of these points were first raised by Schulmann et al. (1987). Here,
we suggest further research is still needed, and should also take
account of extraocular factors. With that said, in the present
context, our older participants were able to match the younger
group’s postural and visual performances. This may be said on
the cognitive level (sensory integration of visual cues to the
postural control system), and on the physical functioning level
(musculoskeletal responses to maintain upright stabilty). How
this translates to more dynamic situations such as locomotion,
and with different populations, now remain the topics of
interest.
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Introduction

Vision is important for balance control during locomotion.1 
Experiments manipulating the visual field of young adult 
treadmill walkers, for example, have resulted in forward 
and backward trunk lean (Logan et al. 2010) and increased 
medial/lateral (ML) trunk movement and step-width varia-
bility (Warren et al. 1996; McAndrew et al. 2010). Step-
width variability is of particular interest as it is linked to 
control of the bodies centre of mass (COM) on a step-to-
step basis and is important for maintaining balance (Bauby 
and Kuo 2000). These findings were thought to result from 
the central nervous system (CNS) detecting changes to the 
visual field and adjusting posture (albeit in error) 
accordingly.

Visual sensing of the external environment and self-
motion within it occurs at the retina. In a 3D world, patterns 
of light reflected off structures reaching the retina create an 
optic array. If the observer moves, it changes the structure 
of the array about a point of central observation (Gibson 
1950). Such changes in patterns of light which flow across 
the retina are thought to be interpreted to estimate body 
position (Warren et al. 1996; Logan et al. 2014). However, 
eye movements can change the structure of the array, and 
flow patterns on the retina can be a combination of those 
caused by self-motion in addition to those caused by eye 
movements (Lappe and Hoffmann 2000). The CNS must, 
therefore, solve a source separation issue between the two 
when judging self-motion (DeAngelis and Angelaki 2012).

1 In the present manuscript, the term ‘balance control’ defines main-
tenance of an upright posture during locomotion.

Abstract Dynamic balance control—characterised as 
movement of the trunk and lower limbs—was assessed 
during fixation of a fixed target, smooth pursuits and sac-
cadic eye movements in ten young (22.9 ± 1.5 years) 
and ten older (72.1 ± 8.2 years) healthy females walking 
overground. Participants were presented with visual stim-
uli to initiate eye movements, and posture and gaze were 
assessed with motion analysis and eye tracking equipment. 
The results showed an increase in medial/lateral (ML) trunk 
movement (C7: p = 0.012; sacrum: p = 0.009) and step-
width variability (p = 0.052) during smooth pursuits com-
pared to a fixed target, with no changes for saccades com-
pared to a fixed target. The elders demonstrated greater 
ML trunk movement (sacrum: p = 0.037) and step-width 
variability (p = 0.037) than the younger adults through-
out, although this did not interact with the eye movements. 
The findings showed that smooth pursuits decreased bal-
ance control in young and older adults similarly, which 
was likely a consequence of more complicated retinal flow. 
Since healthy elders are typically already at a postural dis-
advantage, further decreases in balance caused by smooth 
pursuits are undesirable.

Keywords Elderly gait · Eye movements · Postural 
control · Saccades · Step-variability · Walking posture
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Despite investigations about how humans control their 
direction heading during eye movements (Royden et al. 
1994), studies manipulating visual flow and assessing bal-
ance during walking have not considered eye movements. If 
changes to flow caused by eye movements affect how humans 
interpret the optic array, it may in turn affect balance control.

The nature of changes to balance control would likely 
depend on the type of eye movement. For instance, visu-
ally fixating a stationary object straight ahead would cause 
radial flow from forward progression, and this would ema-
nate from the central point of observation (Lappe and Hoff-
man 2000). Such flow may be considered useful for balance 
control since it provides a stable reference frame (assuming 
healthy vestibulo-ocular and vestibulo-colic reflexes) from 
which self-motion with respect to the vertical can be deter-
mined. Conversely, tracking an object in horizontal motion 
would cause horizontal flow from eye rotation in addition 
to radial flow from forward progression. The resulting pat-
tern would resemble a curved movement with a shifting 
focus of expansion (Lappe and Hoffmann 2000). Moreo-
ver, although the object of fixation would appear stabilised 
on the fovea, the background information would become 
blurred (Kowler 2011). This added complexity may cause 
difficulty when estimating self-motion, thus decreasing bal-
ance control. Saccades are another kind of eye movement 
used during walking. These are rapid shifts of gaze from 
one region to another (Kowler 2011). However, because 
saccades are a series of fixations separated by rapid inter-
vals, unless the saccades were to an extreme displacement 
and/or with unnaturally high frequency, the stable reference 
frame provided by fixation should be preserved.

Of interest when considering the above are older indi-
viduals. Elders can be more sensitive to ML perturbations 
of the visual field during walking resulting in greater reduc-
tion of trunk stabilisation and increased step-width variabil-
ity when compared to younger adults (Franz et al. 2015). 
Further, it is thought the ageing CNS relies on vision more 
for balance control because of vestibular and musculoskel-
etal sensory declines (Yeh et al. 2014). Therefore, because 
elders cannot decompose retinal flow as effectively as 
young adults, and can be more reliant on visual information, 
any decrease in balance control caused by smooth pursuits 
may be more profound in this age group. One study found 
a comparable increase in postural sway during smooth 
pursuits between young and older adults during standing 
(Thomas et al. 2016). However, because the biomechanical 
constraints and nature of visual flow during walking are so 
different to standing, further investigation is warranted.

Therefore, the present study assessed balance control 
during fixation of a fixed target, smooth pursuits and sac-
cades in healthy young and older females walking over-
ground. It was hypothesised that: (1) smooth pursuits 
would increase medial/lateral (ML) trunk movement and 

step-width variability compared to a fixed target; (2) sac-
cades would maintain balance compared to a fixed target; 
(3) the reduced balance during smooth pursuits would be 
more profound in the older adults.

Materials and methods

Participants

Ten young (mean ± SD: 22.9 ± 1.5 years; 1.7 ± 0.06 m; 
59.5 ± 7.2 kg) and ten older (mean ± SD: 72.1 ± 8.2 years; 
1.6 ± SD 0.03 m; 57.3 ± 5.6 kg) healthy females partici-
pated in the study. The elders were interviewed initially 
to determine suitability for the study. All participants 
adhered to inclusion criteria previously outlined (Thomas 
et al. 2016). In short, they had no known musculoskel-
etal or neurophysiological conditions which could affect 
normal balance during standing and walking. All partici-
pants had an uncorrected visual acuity (without glasses 
or contact lenses) ≥20/100 and were able to ambulate in 
the community without visual correction. The investiga-
tion was carried out in accordance with the recommenda-
tions of the University of Cumbria ethical principles and 
guidelines for research involving human subjects, and all 
procedures, information to the participants and participant 
consent forms were approved by the University of Cumbria 
Research Committee. All subjects gave written informed 
consent in accordance with the Declaration of Helsinki.

Equipment

Visual scenes were projected (Sanyo PLC-XU74, Tokyo, 
Japan) onto a 3.2 × 2.4 m screen on the wall of the labora-
tory. Participants wore eye tracking glasses (Tobii Glasses 2 
Eye Tracker, Tobii Technology, Danderyd, Sweden) which 
have a one-point calibration procedure, autoparallax com-
pensation and slippage compensation allowing for persis-
tent calibration throughout testing with no loss of data aside 
from blinking. A 7 camera Vicon system (MX3, Oxford, 
UK; sampling frequency 100 Hz) recorded three-dimen-
sional positions of eight passive reflective markers located 
at the left and right front and back head, C7, sacrum, and 
left and right heel anatomical landmarks of each participant. 
A custom-made contact mat was used to initiate visual stim-
ulus movement (see “Experimental protocol”).

Visual stimuli

Visual stimuli were programmed with Psychopy stimuli 
presentation software (Peirce 2007). The visual target pre-
sented was a light blue circle displayed over a black back-
ground. Each participant could see the target at all times 
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during testing. Three experimental conditions were imple-
mented: fixed target (FIX), smooth pursuit (PUR) and sac-
cade (SAC). For FIX, the target remained in the centre of 
the screen at eye level. During PUR, the target displaced 
from the centre of the screen in the horizontal direction to a 
defined threshold of visual angle (described below) before 
returning to the centre of the screen with a frequency of 
0.33 Hz (Laurens et al. 2010). The target moved randomly 
left or right on each oscillation, which had no bearing or 
relation to the participants side dominance. This choice 
reflects spontaneous tracking movements occurring in eve-
ryday activities (Kowler 2011). For SAC, the same pro-
tocol was implemented. However, the target disappeared 
from the centre of the screen and reappeared at the defined 
threshold stimulating a saccadic eye movement, and then 
disappeared and reappeared back at the centre.

The stimuli were programmed in degrees of visual angle 
enabling standardisation between laboratories/experiments. 
It was considered to update the size and displacement of the 
visual target relative to each participant as they progressed 
along the walkway. This would have maintained a constant 
degree of visual angle for the size of the target, and visual 
angle change for the displacement of the target. However, this 
would have made the target appear to move away from the 
observer as they progressed forward. In everyday life, objects 
do not typically reduce in size as an observer approaches. 
Likewise, objects moving across the field of vision such as a 
passing pedestrian often maintain a linear heading. The mag-
nitude of the tracking movement is such a case is thus always 
dependent on how far the observer is from a given visual tar-
get. It was decided, therefore, not provide real-time adjust-
ments. As such, the size of the visual target relative to each 
participant corresponded to 1° at the start of the data capture 
area, and 2° at the end. The displacement of the target (left 
or right) in the horizontal direction corresponded to 6° at the 
start of the data capture area and 12° at the end.

Experimental protocol

Five trials for each condition (FIX, PUR and SAC) 
were completed. The conditions were sorted randomly 
and segregated into 3 blocks of 5 trials. Each block 
was separated by 2 min of rest. The participants walked 
overground on a flat level walkway in the laboratory for 
7.5 m. The walkway consisted of a 2.5 m entry area to 
achieve a steady-state velocity, which has previously 
been recommended for older individuals (Lindemann 
et al. 2008), a 4 m data capture area where balance con-
trol was assessed, and a 1 m exit area (Fig. 1). At least 
2.5 strides of data were collected from each participant 
during each trail which totalled at least 12.5 strides for 
each participant in each condition. FIX was presented 
at the beginning of the entry area before the participants 

set off during all trials. On the first heel strike on enter-
ing the data capture area, which was arranged to be in 
the first 30 cm, visual target movement or no movement 
depending on the condition was initiated by the custom-
made contact mat.

Participants were instructed to fixate their gaze on the 
visual target at all times. If it moved, they should follow it 
with their eyes only making sure not to rotate or tilt their 
head. Gaze shifts less than 15° are commonly achieved 
without rotation of the head (Hallet 1986), and eye move-
ments up to 35° have been performed whilst minimising 
head movements (Paquette and Fung 2011). This accom-
modates the maximum target displacement of 12° in the 
present investigation. Head rotations during testing were 
assessed to ensure any changes in the outcome measures 
were not a result of head movements corresponding to the 
direction of the visual target movement.

Method considerations

The visual stimuli and experimental set-up aimed to repli-
cate as closely as possible eye movements used in everyday 
life and their changes to flow whilst standardising eye move-
ment velocity and displacement. Using a virtual reality envi-
ronment with 3D cues, which would generate similar retinal 
flow patterns as to walking through a room, was considered. 
However, this would require treadmill walking which for 
reasons discussed below was not appropriate. Instead, the 
2D visual target was projected at the wall of the laboratory, 
and as such there would have been visual flow generated 
from the rest of the room as the participants walked for-
ward, e.g. from the walls running adjacent to the walkway. 
With regard to the target, this just provided a visual fixation 
point—during a smooth pursuit it is the background visual 
information (the rest of the room in the present experiment) 
that becomes more difficult to interpret, and this is what has 
previously been suggested to affect standing postural con-
trol (Laurens et al. 2010; Thomas et al. 2016). The object of 
fixation is, therefore, not of particular concern.

Fig. 1  Walkway consisting of entry area (a); contact mat (b); data 
collection area (c); exit area (d); and projection screen (e). Asterisk 
distance between walkway and projection screen not to scale
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With regard to locating the target at eye level and in 
the centre of the visual field, although humans have been 
shown to fixate on points at which they will step around 
a second or so before stepping on them (Patla and Vick-
ers 2003), walking humans also locate their gaze centrally 
along the horizontal and vertical relative to the direction 
heading. In other words, toward a heading point (Foulsham 
et al. 2011). Moreover, they often fixate on fixed and mov-
ing objects including near and far standing and moving 
humans (Foulsham et al. 2011) and things located in the 
field of vision such as posters affixed to walls (Dowiasch 
et al. 2015). One study found that of 133 pedestrians, a 
walker fixated 83% of them at least once whilst navigat-
ing a university campus (Foulsham et al. 2011). This cou-
pled with a previously documented visual attentional bias 
towards people’s faces and eyes (Birmingham et al. 2008) 
suggests that gaze is often allocated at eye level in front of 
the observer, and sometimes on moving targets.

Finally, the number of recommended strides for assess-
ing gait variability has ranged between 5 and 8 to the 
order of hundreds whilst dual tasking in older individuals 
(Owings and Grabiner 2004; Hollman et al. 2010). Addi-
tionally, separating data collection into a series of stop-start 
walks as in the present experiment can increase lower-limb 
variability when compared to one continuous walk (Pater-
son et al. 2009). However, measuring gait for long dura-
tion walking would typically require a treadmill which 
has been shown to significantly alter gait (Dingwell et al. 
2001). Further, replicating normal retinal flow patterns 
on a treadmill would require virtual reality. In addition to 
the limited availability of such a set up, virtual reality has 
also been shown to alter gait compared to normal condi-
tions, and may even cause instability in healthy subjects 
(Hollman et al. 2007). The present investigation, therefore, 
placed emphasis on repeated short overground walks. First, 
this more closely replicates everyday walking (Orendurff 
et al. 2008) in a more familiar way for elders (Schellenbach 
et al. 2010). Second, it was important to assess immediate 
effects of visual stimulus onset. In everyday life, eye move-
ments can be initiated spontaneously, and objects of inter-
est may not be observed for many continuous strides. This 
was important considering the CNS can re-weight its use 
of vision over longer time frames (Allison et al. 2006) and 
short-term effects may have gone unnoticed during longer 
walks.

Data analysis

Raw marker data were extracted using the Biomechani-
cal Toolkit Python bindings (Barre and Armand 2014) 
and analysed offline (Scipy, scientific computing tools 
for Python). Marker trajectories were low-pass filtered 

using a fourth order zero-phase Butterworth filter with a 
cutoff frequency of 10 Hz. Heel strike events were deter-
mined based on the position of the heel marker in relation 
to the Sacrum marker (Zeni et al. 2008). In short, the y 
coordinate of the Sacrum marker at each time frame was 
subtracted from the y coordinate of each heel marker at 
the corresponding time frame, and peaks in the result-
ing time series which represent heel strikes determined. 
This method has been shown to estimate overground heel 
strike events to within 0.0021 s of gold standard force 
platform measurements.

Trunk movement

Movement of the lower and upper trunk in the ML direc-
tion was quantified as the root mean square (RMS) of the 
ML component of the C7 and Sacrum markers, where 
N = number of data points and n = 1, …, N:

Trunk lean was defined as the inclination angle of the 
trunk with respect to the vertical axis, which was calculated 
from the inverse tangent of the distance between the C7 and 
Sacrum markers in the ML axis divided by the same dis-
tance in the vertical axis. RMS of the resulting time series 
was then computed. The present experiment focused on 
the ML axis for trunk kinematics as this is sensitive to the 
visual component of balance control (Warren et al. 1996; 
McAndrew et al. 2010).

Lower limbs

Step-width was defined as the ML distance between heel 
markers at heel strike. Mean and coefficient of variation 
(CV) where SD = standard deviation:

was then calculated for step-width across successive steps 
(Brach et al. 2005; McAndrew et al. 2010; Franz et al. 
2015).

Head rotations

The four head markers were used to construct a head seg-
ment. Then, rotation matrices were calculated between con-
secutive frames and converted to Euler angles expressed in 
degrees of yaw rotation about the vertical. This corresponds 

RMS =

√
1

N

∑
n2.

CV =

SD

mean
× 100
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to the direction of the visual target movement. RMS of the 
head rotation time series was then computed.

Gaze fixations

Where participants were looking in relation to the target 
was assessed to ensure the protocol was completed accu-
rately. Gaze data (sampled at 50 Hz) was filtered with a 
Tobii I-VT fixation filter to yield gaze fixations (window 
length 20 ms; threshold 30°/s−1). 2D video sequences 
consisting of the participant’s point of view of each visual 
scene superimposed with their gaze fixations was exported. 
Position of the target and the position of each gaze fixa-
tion as x and y coordinates on the 2D video frame was then 
determined using a motion tracking algorithm (OpenCV 
Python libraries). The resultant coordinate time series 
for each was then calculated. Data before stimulus onset 
and at the end of the data collection area was removed in 
accordance with the motion capture data. Where no gaze 
data were sampled to due blinking, the target coordinate at 
the corresponding time frame was removed (Thomas et al. 
2016). Pearson correlation coefficients were then calculated 
between the coordinate time series of the target and that of 
the gaze fixations, and finally RMS of gaze subtracted from 
the target position (RMS gaze error) throughout each video 
sequence.

Reliability of the tracking procedure used to determine 
the coordinates of the target and the gaze fixations was 
assessed by re-tracking all of the video sequences and com-
puting the CV between gaze error RMS results. A CV of 
0% indicated perfect reliability throughout.

Statistical analysis

The mean or median of the 5 trials for each participant in 
each condition was used for statistical analysis of the rel-
evant outcome measures depending on a normal or non-
normal distribution of the raw data. Condition (3 × visual 
scenes) and age (young and older) were considered as two 
independent factors. The effect of these two factors on C7 
and sacrum RMS; trunk lean RMS; step-width mean and 
CV; head rotation RMS; correlation coefficients between the 
target coordinates and gaze fixation coordinates; and gaze 
error RMS were examined with a two way (condition × age) 
mixed analysis of variance (ANOVA). Where the averages/
medians of the trials for each outcome measure departed 
from normality, effects were re-examined using robust 
mixed ANOVAs based on trimmed means (Field et al. 2012). 
Post hoc analyses included t tests or Wilcoxon signed-rank 
tests with Bonferroni corrections. Finally, where signifi-
cant differences were found (p ≤ 0.05), Hedges’ gav effect 
sizes were calculated (Lakens 2013). Common indicative 

thresholds for effect sizes are small (0.2), medium (0.5) and 
large (0.8). Statistical results were interpreted in the context 
of strength of evidence against the null hypotheses, which 
was determined by the magnitude of the p values (smaller 
values indicate stronger evidence), magnitude of effect sizes, 
and 95% confidence intervals. Statistical analyses were per-
formed with the R software package.

Results

Trunk movement

C7 and Sacrum RMS along the ML direction are shown 
in Fig. 2 and Fig. 3. C7 RMS showed a main effect of 
condition (F2,36 = 4.71, p = 0.015). Post hoc compari-
sons revealed larger C7 RMS during PUR compared to 
FIX (p = 0.012, gav = 0.32), but no change for SAC com-
pared to FIX. C7 RMS showed no main effect of age or 
interaction effect between condition and age. 

Sacrum RMS showed a main effect of condition 
(F2,36 = 5.06, p = 0.011). Post hoc comparisons revealed 
larger Sacrum RMS during PUR compared to FIX 
(p = 0.009, gav = 0.27), but no change for SAC com-
pared to FIX. Sacrum RMS showed a main effect of age 
 (F1,18 = 5.05, p = 0.037), with larger Sacrum RMS in the 
older group. Sacrum RMS showed no interaction effect 
between condition and age.

Fig. 2  C7 RMS in the ML direction in young (n = 10) and older 
(n = 10) participants during different eye movements. Fix fixed tar-
get, Pur smooth pursuit, Sac Saccade. Data are displayed as means 
and 95% confidence intervals in bold, and medians and lower and 
upper quartiles with Tukey style whiskers (outliers plotted separately). 
Asterisk significant difference between conditions
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Trunk lean RMS showed no main effect of condition 
or age, or any interaction effect between condition and 
age.

Lower limbs

Mean step-width showed no main effect of condition or 
age, or any interaction effect between condition and age. 
Step-width CV (Fig. 4.) showed a main effect of con-
dition (F2,36 = 4.75, p = 0.049). Post hoc comparisons 
revealed larger step-width CV during PUR compared to 
FIX (p = 0.052, gav = 0.39), but no change for SAC com-
pared to FIX. Step-width CV showed a main effect of age 
(F1,18 = 5.08, p = 0.037), with larger step-width CV in 
the older group. Step-width CV showed no interaction 
effect between condition and age.

Head rotation

Head rotation showed no main effect of condition or age, or 
any interaction effect between condition and age. This sug-
gests that all participants refrained from using head rotation 
in the direction of target movement.

Gaze variables

The correlation coefficients between the coordinate time 
series of the target and the gaze fixations, and gaze error 
RMS showed no main effect of condition or age, or any 
interaction effect between condition and age. The corre-
lation analysis showed strong correlations (r > 0.8) in all 
conditions for all participants. These results indicate all of 
the participants followed instructions and completed the 
visual tasks aside from natural gaze errors.

Discussion

The present investigation assessed dynamic balance con-
trol during fixation of a fixed target, and smooth pursuit 
and saccadic eye movements in young and older healthy 
females steady state walking. Smooth pursuits increased 
ML trunk movement and step-width variability compared 
to the fixed target similarly in both age groups, whilst there 
were no changes for saccades compared to the fixed tar-
get. The elders demonstrated less baseline stability in all 
conditions.

The present results support the first hypothesis that 
visually tracking a moving target with smooth pursuits 
decreases balance control during walking. This was likely 
related to changes in retinal flow caused by the eye move-
ments. Processing of optic flow for self-motion during 
eye movements is thought to occur in the medial superior 
temporal (MST) (Duffy and Wurtz 1991) and ventral intra-
parietal (VIP) areas of the visual cortex (Schaafsma and 
Duysens 1996). These regions have been linked to judging 
direction heading from optic flow (Zhang et al. 2004), and 

Fig. 3  Sacrum RMS in the ML direction in young (n = 10) and older 
(n = 10) participants during different eye movements. Fix fixed tar-
get, Pur smooth pursuit, Sac Saccade. Data are displayed as means 
and 95% confidence intervals in bold, and medians and lower and 
upper quartiles with Tukey style whiskers (outliers plotted separately). 
Asterisk significant difference between conditions. Double asterisk 
significant difference between age groups

Fig. 4  Step-width variability in young (n = 10) and older (n = 10) 
participants during different eye movement conditions. Fix fixed tar-
get, Pur smooth pursuit, Sac saccade. Data are displayed as means 
and 95% confidence intervals in bold, and medians and lower and 
upper quartiles with Tukey style whiskers (outliers plotted sepa-
rately). Asterisk significant difference between conditions. Double 
asterisk significant difference between age groups
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compensation for changes in the focus of expansion dur-
ing smooth pursuits (Page and Duffy 1999). In the present 
experiment, the added complexity to optic flow caused by 
smooth pursuits would likely lead to increased processing 
demands within the MST and VIP areas, and this may have 
reduced visual sensitivity to self-motion.

Another factor which may have contributed to decreased 
balance during smooth pursuits is more complex extraoc-
ular signals. Extra-ocular signals have been shown to 
improve balance in standing humans, where small eye 
movements used to maintain gaze fixations during postural 
sway (initiated by the vestibulo-ocular reflex) provide infor-
mation about body position relative to the fixation point 
(Guerraz and Bronstein 2008). During locomotion, fixation 
of a fixed target would produce similar signals. For exam-
ple, researchers found a minimum threshold of 0.3 degrees 
of eye movement for 1 cm of translational head movement 
was useful during standing (Guerraz and Bronstein 2008). 
During locomotion, the gait cycle would induce translation 
head movements meeting this threshold (Borg et al. 2015). 
It is thus likely that the extraocular component of balance 
control persists during walking, and if so, it is also likely 
that during a smooth pursuit, the eye rotation required to 
keep gaze fixated on the moving target would surpass any 
extraocular signals useful for balance control. This was 
also thought to occur during standing in previous experi-
ments (Laurens et al. 2010; Thomas et al. 2016).

Supporting the second hypothesis, there were no 
changes to balance during saccades compared to the fixed 
target. Because saccades are a series of fixations separated 
by rapid eye movements, and the target movement during 
the saccades was completed in sub 20 ms and each saccade 
in 40–50 ms (Abrams et al. 1989), gaze was fixated on a 
stationary target for the majority of the saccadic eye move-
ment trials. Such conditions likely preserved the stable ref-
erence frame similar to the fixed target. It is also probable, 
therefore, that any element of extraocular postural stabili-
sation was also preserved. Even though the final displace-
ment of the eye rotation during saccades was the same as 
during smooth pursuit, the nature of eye rotation and neu-
ral control to reach that displacement are different (Kowler 
2011). In effect, the continuing rotation during smooth pur-
suits complicates extraocular signals, whilst the short rapid 
shifts of saccades preserve longer periods (pre and post-
saccade) of fixation and thus useful extraocular signals.

Contrary to the third hypothesis, the negative change to 
balance during smooth pursuits was not more profound in 
the older adults. This is interesting since elders have previ-
ously been shown to have difficulties in interpreting optic 
flow for self-motion (Berard et al. 2009). However, com-
paring the present results with others is difficult since there 
have been no studies considering eye movements and bal-
ance in walking elders. One explanation is there was only 

a small effect (trunk: gav = 0.32; lower limbs: gav = 0.39) 
of smooth pursuits on balance in both age groups. The 
changes to retinal flow, therefore, may not have been pro-
found enough to ‘challenge’ the ageing CNS enough to 
bring about a greater change. This would indicate that 
healthy elders are able to process visual flow for balance 
purposes during smooth pursuits as effectively as younger 
adults. However, the older adults demonstrated reduced bal-
ance throughout testing, with greater Sacrum displacement 
and step-width variability in all conditions. Thus, the elders 
were already at a disadvantage, which was probably due 
to a combination of musculoskeletal and sensory deficits 
which are considered normal in healthy ageing (Ambrose 
et al. 2013). Any further decrease to balance such as that 
shown in the present experiment is, therefore, certainly 
undesirable, particularly considering that greater baseline 
instability indicates a higher risk of falls (Ambrose et al. 
2013). Further research is needed to assess whether smooth 
pursuits affect balance control in pathological ageing. 
For example, in patients with vestibular dysfunction and/
or eye conditions such as peripheral vision loss—periph-
eral vision is more dominant in balance control (Guerraz 
and Bronstein 2008), and the loss of which may, therefore, 
exacerbate negative changes to balance during smooth pur-
suits. Such research may be important for identifying those 
at increased risk of falls.
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Visually fixating an indoor pedestrian decreases balance
control in young and older healthy females walking in a

real-world environment

Neil M. Thomas*, Tim Donovan, Susan Dewhurst, and Theodoros M.
Bampouras
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Abstract

Abstract: Dynamic balance control during overground walking was assessed in 10

young (23.6 ± 3.4) and 10 older (71.0 ± 5.5 years) healthy females during free gaze,

and when fixating a standing or walking indoor pedestrian in an everyday use waiting

room. Balance was characterised by medial/lateral sacrum acceleration dispersion, and

gaze fixations were simultaneously assessed with eye tracking equipment. The results

showed increased sacrum dispersion during fixation of both the stationary (p=0.006,

gav=0.21) and walking (p=0.001, gav=0.23) pedestrian compared to free gaze. There

were, however, no differences between age groups for sacrum dispersion, or between

conditions or ages for gaze fixations. The findings were likely a result of blurred back-

ground information during the fixation tasks, which facilitated less reliable estimates

of self-motion through vision. Such a decrease in balance control, the first to be shown

in a real-world scenario, may warrant further investigation in those at high risk of falls.

Keywords: Elderly gait; Eye movements; Postural control; Smooth pursuits;

Trunk accelerations; Walking balance

1. Introduction

Vision helps maintain an upright posture during locomotion [1, 2]. This is facilitated by

changes in patterns of light intensities caused by relative motion between an observer and

their environment, which are sensed at the retina [3]. Lateral trunk lean, for example, would

generate a translational flow on the retina in the opposite direction [4]. The central nervous5

system uses this to estimate shifts in body position and initiate postural adjustments.

Eye movements can affect how retinal information is used for balance control. Visually

tracking a moving target with smooth pursuits increased mediolateral (ML) trunk movement
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and step-width variability during walking in young and older females similarly – factors which

reflect decreased stability [5]. During such eye movements, although the target of fixation is10

stabilised on the fovea, the background information can be prone to blurring [6]. This, in

turn, may make it more difficult to estimate self-motion through visual means.

Previous investigation about eye movements and balance employed targets projected in

2D [7, 8]. This mimics viewing of a background scene, where focusing on the target requires

similar convergence to other locations surrounding the target [9]. Humans often, however,15

fixate stationary and moving objects located more in the foreground, such as stationary and

walking pedestrians [10]. This requires more convergence to bring focus to the object, which

in turn causes background blurring [11]. If the blur makes it more difficult to determine

self-motion with visual information, it may result in decreased balance control even when

the object is stationary. Presumably, such an effect will be more profound when the object20

is moving due to more dynamic blurring. However, whilst a recent study assessed standing

balance during fixation of near and far light targets [12], the authors did not consider fixation

of the background alone. Further, walking balance whilst tracking fixed or moving objects

more in the foreground has not previously been examined.

These considerations may have important implications in older adults. Elders typically25

demonstrate less ‘baseline’ stability and a reduced ability to correct loss of balance during

walking [13], and this may place them at an even greater risk of falls during such visual

fixation tasks. Assessing elders walking balance whilst fixating static and moving objects

more in the foreground may, therefore, further understanding of risk factors of falls in elders.

Moreover, conducting the experiment in a realistic setting will offer a more direct application30

of the results.

The present investigation, therefore, assessed dynamic balance in young and older adults

during free gaze, and when visually tracking a standing or walking indoor pedestrian in a

real-world environment. It was hypothesised: 1) visually fixating the standing and walking

pedestrian would decrease balance control compared to free gaze in young and older par-35

ticipants similarly, 2) there would be a more profound effect whilst tracking the walking

pedestrian, 3) the elders would exhibit less baseline stability throughout.

1.1. Participants

Ten young (mean ± SD: age: 23.6 ± 3.4 years, height: 1.68 ± 0.06 m, mass: 69.0 ± 9.9 kg)

and 10 older (mean ± SD: age: 71.0 ± 5.5 years, height: 1.61 ± 0.06 m, mass: 63.9 ± 10.3 kg)40

healthy females participated in the investigation. The elders were interviewed by telephone to

determine eligibility and adhered to inclusion criteria previously outlined [14]. In brief, they

had no known musculoskeletal or neurophysiological conditions which could negatively affect

balance control during walking. The participants had an uncorrected visual acuity of ≥20/100

and were able to ambulate in the community without visual correction. The investigation was45
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carried out in accordance with the University of Cumbria recommendations and guidelines for

research involving human subjects, and all procedures, information to the participants, and

participant consent forms, were approved by the University of Cumbria Research Committee.

All participants gave written informed consent in accordance with the Declaration of Helsinki.

1.2. Equipment50

Testing was carried out on a flat walkway into a waiting room (Fig. 1). The walkway

consisted of a 2.5 m entry area to achieve a steady-state velocity, which has previously been

recommended for older individuals [15], a 4 m data capture area where dynamic balance char-

acteristics were assessed, and a 1 m exit area. Sliding doors concealed the waiting room from

the participants when they were at the start of the walkway. A member of the research team55

(pedestrian) would be absent from or standing or walking within a standardised pedestrian

area at the far end of the waiting room (Fig. 2, see Experimental protocol section 1.3). A

custom-made contact mat was used to send a signal to a laptop informing the pedestrian when

to begin walking and in which direction (also see Experimental protocol section 1.3). Four in-

ertial measurement units (IMUs: Opal, APDM, Portland, Oregon) measured accelerations of60

the centre front head, sacrum, and left and right ankle anatomical land marks of each partic-

ipant. Participants wore eye tracking glasses (Tobii Glasses 2 Eye Tracker, Tobii Technology,

Danderyd, Sweden) which have a one-point calibration procedure, autoparallax compensation

and slippage compensation allowing for persistent calibration throughout testing with no loss

of data aside from blinking.65

1.3. Experimental protocol

The sliding doors were shut before each trial and then opened signalling the trial to

commence. The participants then walked straight into the room at a self-selected pace along

the length of the walkway towards the exit area. Three conditions were implemented: free

gaze (FREE), stationary pedestrian (STAT) and walking pedestrian (WALK). For FREE,70

the waiting room was void of the pedestrian. For STAT, the pedestrian stood stationary in

the centre of the pedestrian area. For WALK, on the first heel strike on entering the data

capture area, the contact mat (beginning at the start of the data capture area and ending 30

cm along the walkway) sent a signal to a laptop out of view of the participant which informed

the pedestrian to walk 1.5 m across the pedestrian area, before standing still. The direction75

was random on each trial. During FREE, the participants were given no instructions where

to look. During STAT and WALK, they were informed to look at the pedestrian at all times,

and if the pedestrian moved, to track them with their eyes only making sure not to rotate

or tilt their heads. The 1.5 m threshold corresponded to 12 of visual angle relative to the

participants while they were at the start of the data capture area, and 26 at the end. During80

STAT and WALK, the pedestrian was present on door opening and was thus visible to the
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Figure 1: A schematic diagram of the experimental environment. The walkway into the

waiting room consists of A: entry area, B: contact mat, C: sliding doors, D: data collection

area, E: exit area, F: pedestrian area. All distances are to scale.

Figure 2: Example of a participant’s point of view whilst walking into the waiting room taken

from the eye tracking camera. The stationary pedestrian is present in this condition. The

circle on the pedestrian represents a gaze fixation.
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participants at the start of the walkway. However, prior to door opening, the participants

were blinded to the conditions in the room.

Five trials for each condition (FREE, STAT and WALK) were completed. The conditions

were randomly assorted and segregated into 3 blocks of 5 trials. There was a 30 s rest period85

between each trial, and a 2-5 min rest period between each block of 5 trials.

1.4. Data analysis

Raw data from the IMU devices were exported and analysed offline (Scipy, Scientific

Computing Tools for Python). Raw data were filtered with a phase-corrected low-pass But-

terworth filter (20Hz cuttoff). Heel strikes and mid-stance phases were determined using90

validated methods previously described in detail [16, 17]. All data were truncated to the first

right heel strike upon entering the data capture area, and the third left stride midstance pe-

riod. Standard deviation (SD) of Sacrum acceleration in the global ML direction then defined

sacrum acceleration dispersion [18], which characterised balance control.

To ensure the participants followed instructions, SD of head rotations about the yaw95

axis obtained from Opal proprietary orientation estimates were calculated, in addition to gaze

fixations [5]. In a modification to the previous gaze analysis [5], a pre-trained histogram of ori-

entated gradients combined with a linear support vector machine model (OpenCV, computer

vision library) was used to automatically identify the pedestrian and record their coordinates

on the exported 2D video frames, which were subsequently compared to those of the gaze100

fixations. The centroid inside the bounding box surrounding the pedestrian was used as a

tracking point, which corresponds roughly to the centre of mass of the pedestrian. Root mean

square (RMS) of gaze subtracted from the pedestrian coordinates then defined RMS gaze er-

ror, and Pearsons correlation coefficients between the gaze and pedestrian coordinates defined

the strength of relationship between both timeseries.105

1.5. Statistical analysis

The mean/median of the 5 trials for each participant in each condition was used for statis-

tical analysis of the relevant outcome measure depending on normal or non-normal distribution

of the raw data. Condition (3 × visual scenes) and age (young and older) were considered as

2 independent factors. The effects of these factors on Head rotation and Sacrum SD were ex-110

amined with a 2 way (condition × age) mixed analysis of variance (ANOVA). The same model

was applied to the correlation coefficients between pedestrian and gaze fixation coordinates

and RMS gaze error, but with only STAT and WALK considered. Post-hoc analyses were t-

tests with Bonferroni corrections. Finally, where significant differences were found (p<0.05),

Hedges’ gav effect sizes were calculated [19]. Common indicative thresholds for effect sizes115

are small (0.2), medium (0.5) and large (0.8). Statistical analyses were performed with the R

software package.
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Figure 3: Sacrum RMS in the ML direction in young (n = 10) and older (n = 10) females

during different eye movement conditions. FREE: free gaze, STAT: stationary pedestrian,

WALK: walking pedestrian. Data are presented as means and 95% confidence intervals in

bold dots and bars, and medians and lower and upper quartiles with Tukey style whiskers

(outliers plotted separately). *Significant difference between conditions.

2. Results

Sacrum SD in the ML direction is shown in Fig. 3. Sacrum SD showed a main effect of

condition (F2,36=11.81, p<0.001). Post-hoc comparisons revealed larger Sacrum SD during120

STAT (p=0.006, gav=0.21) and WALK (p=0.001, gav=0.23) compared to FREE. Sacrum SD

showed no main effect of age or interaction effect between condition and age.

Head rotation SD showed no main effect of condition or age, or any interaction effect

between condition and age. The correlation coefficients (all above 0.7) between the pedestrian

and gaze fixation coordinates and RMS gaze error showed no main effects of condition or125

age, or any interaction effects between condition and age. This suggests the participants

followed instructions and tracked the pedestrian with their eyes whilst refraining from using

head rotations.

3. Discussion

The present investigation assessed balance control during walking in young and older130

adults visually fixating an indoor pedestrian. Increases in Sacrum acceleration dispersion

6
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were found on the ML axis when the pedestrian was standing still and walking. There were,

however, no differences between age groups.

In support of the first hypothesis, there was an increase in sacrum acceleration dispersion

whilst visually fixating the stationary and walking pedestrian as opposed to free gaze in both135

young and older participants. This is the first experiment to show such an effect, and in a

real-world environment. The result is likely a consequence of more complicated or blurred

background retinal information generated by fixation of the pedestrian, which made it more

difficult to determine translational trunk movements through visual information alone. In con-

trast to the second hypothesis, there was a similar increase in sacrum acceleration dispersion140

during fixation of the stationary pedestrian compared to the walking pedestrian. Since there

were no differences in gaze errors between conditions or ages, and the correlations coefficients

between the pedestrian and the fixation coordinates were all strong, it can be assumed that

the participants fixated the pedestrian satisfactorily in each condition. Thus, it seems that

the amount of blur induced by fixation of the stationary pedestrian was sufficient to decrease145

balance control to the same level as when the pedestrian was walking, even with the dynamic

blurring which would have occurred when tracking the walking pedestrian. This may be a

consequence of the gait cycle inducing various oscillatory components of retinal flow from the

background information which would be blurred due to fixation of the nearer object, even

when the object was stationary. In effect, background blur would have been dynamic when150

fixating both the stationary and the walking pedestrian.

The fact there were no differences between fixation of the stationary and the walking

pedestrian raises a question as to why there was a decrease in balance control during smooth

pursuit compared to fixation in previous work [5]. This may be attributed to the location of

the target with respect to the background. For example, during the free gaze condition in155

the present experiment, there were no objects located in the foreground to observe, and thus,

visual fixation of any point in the room required similar convergence to locations immediately

surrounding that point. This actually reflects both the fixation and saccadic conditions in

the previous experiment, where the target was projected onto a flat screen. Fixating the

pedestrian in the present experiment better reflected the smooth pursuit condition of the160

previous experiment, since that was the only condition which would have caused blurring. This

is why there was a similar increase with smooth pursuits compared to stationary fixation in

the previous experiment (gav=0.27), and with fixation of the stationary pedestrian compared

to free gaze in the present experiment (gav=0.21).

In contrast to the third hypothesis, there was no difference in baseline sacrum acceler-165

ation dispersion in the elders compared to the younger adults. Therefore, it appears they

were able to match the younger participant’s performance throughout – processing the visual

information and completing the eye movement tasks. The elderly participants were healthy

and could all ambulate within the community without visual correction, and other older pop-
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ulations have been shown to exhibit resistance to visual motion perception ageing effects due170

to compensatory mechanisms [20]. Therefore, detrimental performance of visual tasks similar

to those in the present experiment may not be a necessary consequence of ageing. With that

said, the small increase in sacrum acceleration dispersion during both fixations tasks may

warrant further investigation in those at greater risk of falling – particularly in those with

vestibular/ocular dysfunction.175

4. Conclusion

The present experiment showed that visually fixating another pedestrian can decrease

balance control in young and older adults during locomotion. The findings may be useful

to those working with elders. It may not be unusual, for example, for older adults to walk

into waiting room environments and fixate on other people. Since this can negatively affect180

balance control, a quiet room void of people would be more optimal for reducing fall-risk in

those who are less stable. Professionals may consider this for interventions as well as designing

and maintaining areas high fall-risk older adults are likely to use. Future research should seek

to examine if older adults adopt similar gaze fixation behaviour (i.e. fixating other people)

during free viewing in a similar real-world environment, which would help put the present185

results into context.
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ABSTRACT2

A variety of age-related changes to gaze behaviour have previously been shown in laboratory-3
based paradigms. However, they have been little explored in real-world environments, which4
would be an important step to consider them in the context of fall-risk reduction. The present5
investigation thus recorded 11 young (mean±SD: 23.4±3.2 years) and 11 older (70.9±5.2 years)6
healthy females’ eye movements whilst walking into waiting room. The participants were able to7
visually pre-plan or not before entering the room, and 3 conditions were implemented inside the8
room, including another standing person (known as actor), a walking actor, or a room absent of9
the actor. Outcome variables included duration of fixation on regions of interest, set-off times, and10
Markov sequence probabilities. Both the young and older adults typically fixated the actor when11
they were present, which has previously been shown to be detrimental to postural control. The12
older adults also adopted a more cautious approach by fixating regions on the ground initially,13
and for longer, before looking to their direction heading. Although the young and older adults14
took longer to set-off walking when given the option to plan, this was not reflected in altered15
gaze behaviour. These findings reflect typical laboratory results, which have been associated16
with factors such as reduced visuospatial memory, slowed visual processing times, and fear and17
anxiety about falling. Future studies should seek to examine older adults’ natural gaze behaviour18
during locomotion over more complex real-world terrain.19

20

Keywords: Elderly, Eye tracking, Older adults, Saccadic, Smooth pursuit, Visual input, Walking balance21
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1 INTRODUCTION

Vision plays several important roles for successful locomotion. It enables pre-planning for upcoming22
movements, such as a route to an intended destination (Patla, 1997), or a foot-placement location (Patla23
and Vickers, 2003). It facilitates online postural adaptations, for example, modifying swing limb trajectory24
to accommodate for changing terrain (Hollands et al., 1995), and it provides a useful means to estimate25
self-motion, which is important for control of balance (Logan et al., 2010) and direction heading (Warren26
et al., 2001).27

Visual sensing of the world and self-motion within it occurs at the retina, where patterns of light reflected28
off structures in the environment are detected (Kowler, 2011). The centre of the retina – the ‘fovea’ – is29
the region with the highest visual acuity, and during locomotion, this is typically directed ‘overtly’ to30
various regions of the environment to extract information relevant to task demands. These can include31
predictive footfall locations around one or two steps ahead (Paquette and Vallis, 2010), potential hazards32
and obstacles (Chapman and Hollands, 2006), and often toward a direction heading (Higuchi, 2013). In33
addition, attention can be directed ‘covertly’ to features in the periphery of vision, such as trip hazards,34
without the need for reorientations of gaze (Marigold and Patla, 2008). Visual self-motion detection is35
facilitated, in part, by ‘retinal flow’. This refers to a change in patterns of light intensities at the retina36
caused by relative motion between an observer and their environment, about a point of central observation.37
Forward motion, for example, would generate an expanding flow emanating from the centre of vision38
(Gibson, 1950). The central nervous system (CNS) can use this to estimate shifts in body position and39
initiate postural adjustments (Guerraz and Bronstein, 2008).40

We recently demonstrated a unique interplay between the region/object of foveal fixation and visually41
derived estimates of self-motion. When young and older participants visually tracked an oscillating42
computer generated target (Thomas et al., 2017), and a standing or walking actor in a real-world environment43
(in review), they exhibited increased medial/lateral trunk movement and step-width variability – factors44
which reflect decreased stability. We suggested the visual tasks generated more retinal blur surrounding45
the foveal region. This would have been caused by the smooth pursuit eye movement to track the moving46
target and the walking actor, which would also complicate retinal flow due to the rotational eye movement,47
or by greater convergence to focus on the stationary actor when compared to the background. This likely48
made it more difficult to determine translational trunk movements with vision, thus reducing the accuracy49
of visual postural corrections. The findings had important implications for elders’ postural control in that50
any negative change to balance is undesirable in older populations (Ambrose et al., 2013).51

In these studies, the participants were instructed where to look, which was necessary to isolate the effects52
of the visual tasks. What is not known is whether young or older adults would adopt similar detrimental53
gaze behaviour during free viewing. Further investigation of natural gaze behaviour in a similar real-world54
environment, will elucidate to whether the decreased balance is transferable to natural gaze patterns.55
Another reason to assess older adults natural gaze behaviour in such a context is that there are actually56
very limited data obtained from walking elders in real-world environments. Previous laboratory-based57
investigations have revealed older adults to look lower in the visual field, and to rely on foveal vision more58
to acquire relevant information (Itoh and Fukuda, 2002). This has been linked to reduced visuospatial59
memory, slowed visual information processing, and fear and anxiety about falling (Uiga et al., 2015; Young60
et al., 2012). It is not known, however, if these results are reflected in real-world conditions, since gaze61
behaviour has been shown to differ between the laboratory and the real world (Dowiasch et al., 2015;62
Foulsham et al., 2011; Zeuwts et al., 2016). Further investigations are important to bridge the gap between63
the lab and the real world.64
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Another factor which has been relatively little explored in the real world is the role of visual pre-planning.65
If participants are allowed to pre-scan the environment prior to gait initiation, it would presumably allow66
more time to understand visuospatial relationships. Therefore, gaze behaviour might differ to that when67
instructed to walk straight away with no prior view. This may also be more profound in older adults,68
since elders typically have slowed visual information processing times (Uiga et al., 2015). However, it is69
currently not known if given the opportunity, elders take longer to pre-scan the environment or change70
their gaze behaviour as opposed to being instructed to walk straight away. Laboratory-based studies which71
have explored gaze behaviour in elders during locomotion, for example, have instructed the participants to72
look straight ahead until they set off walking, after which they are free to look where they want (Richard P.73
Di Fabio, 2001), or have had their view of the walkway obstructed completely prior to trial commencement74
(Zietz and Hollands, 2009). In the present experiment, it would be beneficial to implement pre-planning75
and no planning conditions. This will not only address concerns of internal and external validity (i.e.76
constraining participants to either condition may affect their natural gaze behaviour, or at the very least77
only tell half of the story), but will further understanding of the role of visual pre-planning on gaze78
characteristics.79

Finally, investigations of gaze during locomotion typically utilise metrics such as frequency and duration80
of fixations at specific regions of interest (ROI) (Foulsham et al., 2011). Although this can provide useful81
information about where participants were looking and for how long, it cannot objectively describe the82
sequence of events, particular with multiple participants. A possible approach to address this, which is used83
in other areas of vision research including facial recognition (Boccignone, 2015) and driving (Underwood84
et al., 2005), is Markov sequence analysis. This considers each visual scan path (i.e. sequence of fixations85
at each ROI) as a deliberate sequential process which unfolds over time, and can provide an objective86
overview of how likely the participants were to fixate a certain ROI first, and how likely they were to87
transfer their gaze between ROIs (Boccignone, 2015). Another advantage of this method is that multiple88
scan paths can be modelled together, which is useful when comparing data from two groups, e.g. young89
and older adults (Coutrot et al., 2017). Such an approach, although not previously implemented during90
locomotion, will provide a richer understanding of natural gaze behaviour.91

To these ends, the present study assessed gaze behaviour during free-viewing in young and older adults92
walking into a real-world waiting room environment with the option to plan before entry, or walking straight93
in. Replicating the conditions of our previous study inside the waiting room (in review), the participants94
were presented with another standing or walking actor, or a room absent of the actor. The aims were to: 1)95
determine if young and older adults fixate the actor, which can equate to an increased fall risk; 2) examine96
age-related changes to visual behaviour observed in previous laboratory contexts in the real world; 3)97
uncover potential differences in strategies when given the option to pre-plan a route into the room; 4) probe98
visual behaviour in a novel way by implementing Markov sequence analysis.99

2 MATERIAL & METHODS

2.1 Participants100

Eleven young (mean±SD: age: 23.4±3.2 years, height: 1.71±0.07 m, mass: 70.8±10.3 kg) and 11 older101
(mean±SD: age: 70.9±5.2 years, height: 1.62±0.05 m, mass: 63.7±9.8 kg) healthy females participated102
in the investigation. The elders were interviewed initially by telephone to determine eligibility and had no103
known musculoskeletal or neurophysiological conditions which could negatively affect normal locomotion104
or gaze strategies specific to that age category. All participants had an uncorrected visual acuity (without105
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glasses or contact lenses) ≥20/100 and were able to ambulate in the community without visual correction.106
This study was carried out in accordance with the recommendations of the University of Cumbria’s ethical107
principles and guidelines for research involving human subjects with written informed consent from all108
participants. All participants gave written informed consent in accordance with the Declaration of Helsinki.109
The protocol was approved by the University of Cumbria’s Research Committee.110

2.2 Experimental environment111

Testing was carried out on flat ground in a waiting room (Fig. 1). A custom-made contact mat was112
used to record set-off times of each participant (see Experimental protocol). The entrance to the waiting113
room was a well-lit hallway, which was separated from the room by opaque sliding doors. Similar to our114
previous study (in review), an actor was trained to follow standardised pseudo-random behaviour patterns115
inside the waiting room, e.g. standing still or walking a pre-defined trajectory (see Experimental protocol),116
reflecting what might occur in a typical waiting room, e.g. a doctor greeting a patient. Participants wore117
eye tracking glasses (Tobii Glasses 2 Eye Tracker, Tobii Technology, Danderyd, Sweden) which have a one118
point calibration procedure, autoparallax compensation and slippage compensation allowing for persistent119
calibration throughout testing.120

2.3 Experimental protocol121

The participants stood at a start position on the contact mat, which was located behind the sliding doors122
(Fig. 1). The sliding doors were shut before each trial so the participants could not see into the waiting123
room. The doors then opened signalling the trial to commence. Following this, the participants walked124
into the room at a self-selected pace until verbally informed to stop when they reached a 4 m threshold125
only known to the researcher. Two planning conditions were implemented: PLAN and No PLAN. For126
PLAN, the participants were instructed before the trial started to enter the room when they felt comfortable127
doing so after the doors had opened. For No PLAN, they were instructed before the trial started to enter the128
room as soon as the doors had opened. The time from the start of the door opening to first heel off (i.e.129
gait initiation) was recorded with the contact mat. Three conditions were implemented inside the waiting130
room: empty room (ABSENT), stationary actor (STAT) and walking actor (WALK). For ABSENT, the131
waiting room was absent of the actor. For STAT, the actor stood stationary in the centre of the participants’132
field of vision. For WALK, the actor walked horizontally across the room in the actor area for 1.5 m before133
standing still. The direction was random on each trial. The actor set off walking as soon as the doors had134
opened in all conditions.135

One trial for each visual and planning condition was implemented, which totalled 6 trials per participant.136
The trials were performed randomly with around 30s of rest between them. No instructions or cues as to137
where to look were given to the participants.138

2.4 Data analysis139

Gaze data sampled at 50 Hz were filtered with the Tobii I-VT fixation filter to yield gaze fixations140
(window length 20 ms; threshold 30◦/s). 2D video sequences consisting of the participants’ point of view141
during walking in each trial superimposed with their gaze fixations were exported and analysed offline142
in custom-made software (Video Feature Logger; github.com/N-M-T/FLo). Five ROIs within the room143
typically fixated by the participants were identified by watching several videos from the young and older144
participants. These included the background wall closely surrounding the actor, the actor, the near and far145
path (near was defined as <4 m) and regions in the surrounding visual area, such as the ceiling, chairs,146
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and walls running adjacent to the room. The duration spent fixating each ROI was then expressed as a147
percentage of total fixation time.148

2.5 Statistical analysis149

To examine the effects of ageing on fixation behaviour, a 2-way robust mixed analysis of variance150
(ANOVA) was implemented, with age (Young×Older) and ROI (×5) considered as between and within151
factors, respectively. The same model was applied to examine the effects of planning on fixation behaviour,152
and again to assess the effects of planning on set-off times, with planning (PLAN×NO PLAN) considered153
as a within factor. Post-hoc analyses were Wilcoxon signed-rank tests with Bonferroni corrections. Separate154
analyses were conducted for each room condition (ABSENT, STAT and WALK) with only 4 ROIs155
considered in ABSENT due to no actor being present. All statistical analysis were performed in the R156
software package.157

2.6 Markov sequence modelling158

When considering visual scanpaths as Markov processes, fixation locations must be defined as a ‘states’159
in some context (Boccignone, 2015). Previous studies have taken a data-driven approach to learning states160
using methods such as the Variational Bayesian Framework for Gaussian mixture models (Coutrot et al.,161
2017). This can be beneficial for optimising the number of states where pre-defined regions of interest are162
unclear. E.g. examining faces. In the present study, individual differences in head movement and walking163
speed, and a lower resolution of the visual scene (participant walking through a room as opposed to a164
single close-up image of a face) negate the applicability of such methods. Instead, each ROI identified165
from the video sequences was defined as a state, which provides a reasonable compromise between a priori166
definitions, e.g. dividing a face into equal portions, and objective learning.167

Probability distributions over the initial ROI fixations (reflecting where the participants looked first) and168
probabilities of transfers between ROIs (reflecting a saccade) were calculated from the young and older169
adults scan paths using the seqHMM package in R. This resulted in one transfer probability matrix and170
one set of initial probabilities for each age group (young and old). Then, all of the observed probabilities171
(initial fixation and transfer probabilities) were compared to a Gaussian distribution with a binomial test172
(Underwood et al., 2005). The Gaussian distribution would indicate a random probability of initial fixation173
or shifting gaze to any ROI to be 20% during STAT and WALK (as there are five ROIs in this condition)174
and 25% during ABSENT (as there are four ROIs in this condition). Anything significantly different from175
this indicates a deliberate initial fixation or shift of gaze as opposed to a stratified random sampling process.176
Probabilities which were significant but very small <5% were not presented since they represent infrequent177
fixations (Underwood et al., 2005).178

In order to assess differences between young and older adults, the probabilities from each group (young179
and older) in each condition (ABSENT, STAT and WALK) were compared with the methods of Kullback180
et al. (1962) using the markovchain package in R. This approach statistically verifies whether the two181
sequences belong to the same unknown discrete model. If they do not, they can be considered as describing182
significantly different processes.183

3 RESULTS

The duration of fixation on each ROI expressed as a percentage of total fixation time for PLAN and184
NO PLAN during STAT is presented in Fig. 2. There was no main effect of planning condition. There185
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was, however, a significant main effect of ROI (F4,80=94.45, p<0.001) and a significant interaction effect186
between age and ROI (F4,80=2.84, p=0.045). Post-hoc analyses revealed more time spent looking at the187
actor than the background (p<0.001), far path (p<0.001), near path (p<0.001) and periphery (p<0.001).188
More time spent looking at the background than the periphery (p=0.033), more time spent looking at the189
far path than the periphery (p<0.001) and the near path than the periphery (p=0.008). Examination of the190
interaction plot showed the young adults tended to look more at the actor than the elders, whilst the elders191
tended to look more at the near path than the young adults.192

The duration of fixation on each ROI expressed as a percentage of total fixation time for PLAN and193
NO PLAN during WALK is presented in Fig. 3. There was no main effect of planning condition. There194
was, however, a significant main effect of ROI (F4,80=16.63, p<0.001) and a significant interaction effect195
between age and ROI (F4,80= 4.34, p=0.008). In contrast to STAT, gaze was more evenly distributed across196
the ROIs. Post-hoc analyses revealed more time spent looking at the actor than the periphery (p<0.001).197
More time spent looking at the background than the near path (p<0.001) and the periphery (p<0.001), and198
more time spent looking at the far path than the near path (p<0.001) and the periphery (p<0.001). Analysis199
of the interaction plot showed that the young adults tended to look more at the background than the elders,200
whilst the elders looked more at the far path than the young adults. The young adults also tended to look201
more at the actor than the elders, whilst the elders looked more at the near path than the young adults.202

The duration of fixation on each ROI expressed as a percentage of total fixation time for PLAN and NO203
PLAN during ABSENT is presented in Fig. 4. There was no main effect of planning condition. There204
was, however, a significant main effect of ROI (F3,60=29.96, p<0.001) and a significant interaction effect205
between age and ROI (F3,60=7.14, p¡0.001). Post-hoc analyses revealed more time spent looking at the206
background than the near path (p<0.001) and the periphery (p<0.001), and more time spent looking at the207
far path than the near path (p<0.001) and the periphery (p<0.001). Examination of the interaction plot208
showed the young adults tended to look more at the background than the elders, whilst the elders tended to209
look more at the far path than the young adults.210

Participant set-off times for PLAN and NO PLAN during STAT, WALK and ABSENT are presented211
in Fig. 5. There were significant effects of planning condition for STAT (F1,20=15.69, p=0.003), WALK212
(F1,20=8.42, p=0.019) and ABSENT (F1,20=19.57, p=0.010), with longer set-off times during PLAN213
compared to NO PLAN. There were no main effects of age, or any interaction effects between planning214
condition and age for any of the three conditions.215

Markov sequence analyses were directed at age groups as opposed to planning conditions since this is216
where the time-integrated analysis highlighted significant differences. Sequence analyses were calculated217
for some of the planning data, but as expected, the probabilities were relatively homogeneous across218
planning conditions. Most infrequent probabilities under the 5% threshold were also very low in all of the219
conditions, e.g. <0.1%.220

Probability distributions over the initial ROI fixations and probabilities of transfers between ROIs during221
STAT are presented in Fig. 6. The young and older adults’ data were confirmed to describe significantly222
different processes (p<0.001). The young adults were more likely to fixate the actor first. In contrast, the223
older adults were more likely to fixate the near path first. The young adults showed significant transfers224
from the far path, the background and the periphery to the actor, and from the near path to the far path. The225
older adults showed significant transfers from the near path and the background to the actor, and from the226
near path to the far path.227
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Probability distributions over the initial ROI fixations and probabilities of transfers between ROIs during228
WALK are presented in Fig. 7. The young and older adults’ data were confirmed to describe significantly229
different processes (p<0.001). The young adults were more likely to fixate the actor first. In contrast, the230
older adults were more likely to fixate the near path or the actor first. The young adults showed significant231
transfers from the far path, the actor and the near path to the background, from the near path to the far path,232
and from the periphery to the background. The older adults showed significant transfers from the near path233
to the far path, and from the periphery to the background, the far path, and the actor.234

Probability distributions over the initial ROI fixations and probabilities of transfers between ROIs during235
ABSENT are presented in Fig. 8. The young and older adults’ data were confirmed to describe significantly236
different processes (p<0.001). The young adults were more likely to fixate the far path and the background237
first. In contrast, the older adults were more likely to fixate the near path first. The young adults showed238
significant transfers from the far path, the near path and the periphery to the background. The older adults239
showed significant transfers from the near path and the periphery to the far path.240

4 DISCUSSION

The first aim of the present study was to examine whether older adults adopted similar gaze behaviour to241
that in our previous investigation (in review) – that is, fixations of the actor. During STAT, the elders fixated242
the actor for over 70% of fixation time. The results from our previous study in this particular condition are,243
therefore, transferable to natural gaze patterns. During WALK, however, total fixation time is more evenly244
spread across the background and the far path. It is thus likely as the actor walked out of the centre of the245
participants’ field of vision, the participants stopped fixated the actor and carried on looking ahead. This246
means the more detrimental gaze behaviour was not continued.247

There was also a general trend for both the young and older adults to fixate regions in the direction248
heading for the most time. These correspond to the background, the far path and even the actor when249
the actor was in the centre of the participants’ field of vision. These results fall in line with previous250
laboratory-based studies, which show a bias of visual attention towards a direction heading (Higuchi, 2013),251
which is typically associated with the optic flow component of locomotor steering (Warren et al., 2001).252
This explains why the participants ignored the actor once the actor had left the participants’ direction253
heading (the centre of the actor area). In addition to the heading direction, both the young and older254
participants fixated the near path. This finding is also similar to laboratory-based studies, where it was255
suggested that near path fixation was likely used to acquire information about the walkway, e.g. potential256
trip hazards or slippy surfaces (Uiga et al., 2015), making this the most likely explanation for the present257
findings.258

Of particular interest from the present findings are the interaction effects, which begin to show differences259
in young and older adults’ visual behaviour. For example, the young adults tended to look more at direction260
heading features, e.g. background and actor than the older adults, whilst the elders tended to look more at261
the ground (near path and far path) than the younger adults. These findings reflect typical behaviour in262
laboratory-based studies, where elders look lower in the visual field, possibly with greater head flexion263
(Maslivec et al., 2017), and has previously been related to things like reductions in visuospatial memory264
(Uiga et al., 2015). In effect, the present elders may have needed to fixate the floor for longer or more265
frequently to gather and retain sufficient information. Another factor might be that elders were less able266
to process peripheral visual information about the floor. Previous studies, for example, have shown older267
adults to rely more on foveal vision than covert attention (Itoh and Fukuda, 2002). Therefore, the present268
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elders might have fixated the walkway for longer to ensure it was safe, rather than relying on peripheral269
detection of hazards. It may also be that the older adults were less confident about the floor being clear270
of obstacles, and they ultimately checked it more often regardless of actual threat perception. Previous271
studies have linked anxiety to longer obstacle fixations, for example, which certainly lends credence to that272
notion (Young and Mark Williams, 2015). These results suggest that, at least in our cohort of participants,273
gaze behaviour found in the laboratory during locomotion with actual body movements are reflected in the274
real-world.275

Surprisingly, there was no effect of pre-planning on gaze behaviour. It may be that the cognitive276
visuospatial mapping demands were relatively low considering the flat and relatively easy to navigate ground277
in the waiting room. This was likely not challenging enough to warrant altered visual behaviour. It would278
be interesting to examine the role of visual pre-planning over more challenging terrain. Notwithstanding279
this, both the young and older adults took longer to set off when given the opportunity to plan as opposed280
to being instructed to enter the room as soon as the sliding doors had opened. This probably simply reflects281
the more natural behaviour when not ‘rushed’ to set-off walking.282

The present study probed visual behaviour during locomotion in a unique way by considering the visual283
scan paths as Markov sequences. The findings add a new perspective to the duration of fixation data. That284
is, the young adults were more likely to initially fixate direction heading regions first (such as the actor285
and the background), whilst the older adults were more likely to fixate the path first, and particularly the286
near path. This trend was the same across all conditions with the exception of WALK, where there is a287
probability for the elders to look at the actor first as well. Subsequently, there are interesting transfers of288
gaze from these initial fixation locations. Overall, the older adults were typically more likely to look from289
the path to their direction heading, whilst younger adults from regions in their direction heading to others290
in their direction heading. In short, the older adults were more likely to adopt a cautious gaze strategy by291
checking the floor first before looking ahead. This may be due to some of the factors mentioned above,292
such as increased anxiety about the ground being clear, or more reliance on foveal vision. It is probably not293
due to reduced visuospatial memory, since the initial fixation, being the first, cannot be associated with294
memory in that context.295

There are some limitations with the Markov sequence methods adopted in the present investigation, in296
that due to the combination of only modelling 2 fixation scan paths, some information is inevitably lost.297
For example, during WALK, the young adults must have transferred their gaze to the far path since there is298
a transfer from this location, although there is no direct transfer from the actor (the initial fixation location299
in most participants) to the far path. In these circumstances, we can make some inferences. E.g. some300
participants may have initially fixated the near path, and some the actor. Then those two groups fixated the301
far path together, and continued to transfer from the far path to the background. This, however, becomes a302
rather drawn out process, and is mostly speculative.303

When putting the present findings in the context of fall risk, the first thing to consider is whether or not304
there was risky or maladaptive gaze behaviour. In both STAT and WALK, the older adults fixated the actor305
for around 70% and 20% of total fixation time, respectively. Since fixating a standing and walking actor306
has recently been shown to be detrimental to balance (in review), this fixation behaviour can considered307
undesirable, especially when the moving object is of no consequence to the navigation route. For the308
initial and longer floor fixations exhibited by the older adults, it is difficult to say whether this is negative.309
It may actually be beneficial for them to check the floor first for hazards, particularly if they are less310
able to correct a trip or a fall. In the context of planning, we can only suggest it is beneficial to visually311
‘absorb’ the specifics of an environment. Even though gaze behaviour was the same across planning312
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conditions in the present investigation, the environment was relatively easy to navigate. More challenging313
surfaces may require more planning time, and so it is likely more optimal not to rush into any environment.314
This is supported by the fact both young and older adults took longer to enter the room when given the315
option to plan, which reflects more natural behaviour. One useful component of the present results is that316
the participants ignored the actor after they had left the heading direction line of sight. This means the317
detrimental gaze behaviour was not continued. Aside from thinking about training older adults to fixate318
other stationary locations in a direction heading, as opposed to other people, a very simple solution would319
be to consider where to stand when greeting older adults in a waiting room. Put simply, distracting an elder320
so they look up to greet you would, a) reduce the likelihood they will initially floor fixate to check for321
slip/trip hazards, b) reduce the efficacy of visual balance control, and both of these would lead to increased322
fall risk.323
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Figure 1: A schematic diagram of the experimental environment. A: participants’ starting position; B:
sliding doors; C: walkway; and D: actor area. All distances are to scale. Note that the walkway outlines
were not visible to the participants, and only verbal cues were used to terminate the participants’ gait.
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Figure 2: Duration of fixation on each ROI expressed as a percentage of total fixation time for PLAN
and NO PLAN during STAT(±SD) in young (n=11) and older (n=11) females. Significant differences are
reported in the main text of the results section.

This is a provisional file, not the final typeset article 12

162



Thomas et al.

Figure 3: The duration of fixation on each ROI expressed as a percentage of total fixation time for PLAN
and NO PLAN during WALK(±SD) in young (n=11) and older (n=11) females. Significant differences are
reported in the main text of the results section.
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Figure 4: The duration of fixation on each ROI expressed as a percentage of total fixation time for PLAN
and NO PLAN during ABSENT(±SD) in young (n=11) and older (n=11) females. Significant differences
are reported in the main text of the results section.
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(A) (B)

(C)

Figure 5: Participant set-off times for PLAN and NO PLAN during A: STAT, B: WALK and C: ABSENT,
in young (n=11) and older (n=11) females. Data are presented as means and 95% confidence intervals in
bold dots and bars, and medians and lower and upper quartiles with Tukey style whiskers (outliers plotted
separately). *Significant difference between conditions.
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(A) (B)

Figure 6: Probability distributions over the initial ROI fixations and probabilities of transfers between
ROIs (presented as percentages) during STAT in A: young (n=11) and B: older (n=11) females. The blue
circles denote initial fixations with the corresponding probability displayed underneath. The grey arrows
denote transfers between ROIs with the corresponding probability superimposed. The size of the circles
and arrows are relative to the magnitude of the probabilities. Only probabilities significantly different from
a Gaussian distribution and >5% are displayed.
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(A) (B)

Figure 7: Probability distributions over the initial ROI fixations and probabilities of transfers between
ROIs (presented as percentages) during WALK in A: young (n=11) and B: older (n=11) females. The blue
circles denote initial fixations with the corresponding probability displayed underneath. The grey arrows
denote transfers between ROIs with the corresponding probability superimposed. The size of the circles
and arrows are relative to the magnitude of the probabilities. Only probabilities significantly different from
a Gaussian distribution and >5% are displayed.
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(A) (B)

Figure 8: Probability distributions over the initial ROI fixations and probabilities of transfers between ROIs
(presented as percentages) during ABSENT in A: young (n=11) and B: older (n=11) females. The blue
circles denote initial fixations with the corresponding probability displayed underneath. The grey arrows
denote transfers between ROIs with the corresponding probability superimposed. The size of the circles
and arrows are relative to the magnitude of the probabilities. Only probabilities significantly different from
a Gaussian distribution and >5% are displayed.
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Introduction

• Vision provides important information for postural control 
through retinal cues and extraocular position information

• There is growing evidence to suggest eye movements can 
affect postural control

• However, little research in older individuals

EYE MOVEMENTS AFFECT POSTURAL CONTROL IN YOUNG 
AND OLDER FEMALES
Thomas, N.M., Bampouras, T.M., Donovan, T., Dewhurst, S.
Active Ageing Research Group, UoC (Lancaster, UK)

Neil.thomas@cumbria.ac.uk
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Methods

• Stationary gaze fixations and 
smooth pursuit eye movements in 
12 young (26.1±4.9) and 12 older 
(72.8±6.9 years) females

• Postural sway and gaze errors 
were compared within conditions 
and between age groups
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Results

EYE MOVEMENTS AFFECT POSTURAL CONTROL IN YOUNG 
AND OLDER FEMALES
Thomas, N.M., Bampouras, T.M., Donovan, T., Dewhurst, S.
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• Smooth pursuits caused 
increases of postural sway 
(p < 0.001, 30.36%, gav = 
0.95)

• No change with age for 
postural sway or gaze 
errors
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Discussion

• More challenging conditions for interpreting retinal flow and 
more complex extraocular signals are likely to have increased 
postural sway

• Declines in posture and gaze control during stance may not be 
a consequence of healthy ageing

• Future research is needed during locomotion 
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'Visual Contributions to Postural Stability during Stationary Target
Fixations, and saccadic and Smooth Pursuit Eye Movements'

Participant Information Sheet

About the study
This research aims to investigate balance in response to a number of different visual
scenes. The purpose is to develop our understanding of visual contributions to postural
control. 

Some questions you may have about the research project:

Why have you asked me to take part and what will I be required to do? 
This investigation requires healthy male and female participants aged over 65 years who
are  free  from  balance  disorders,  special  susceptibility  to  motion  sickness,  or
degenerative eye conditions. You will be required to stand upright around 1 metre in front
of a projection screen. You will then be asked to observe a total of 13 different visual
scenes, including stationary and moving targets with different background environments.
Your balance in response to these scenes will be assessed with a force platform, and
your ‘point  of  view’ observations (where you are looking) will  be monitored with eye
tracking technology. You will be required to attend the ‘Bishops Cross drama studio’ at
the University of Cumbria Lancaster campus once for testing, which will last around one
hour.

What if I do not wish to take part or change my mind during the study?
Your participation in the study is entirely voluntary. You are free to withdraw from the
study at any time without having to provide a reason for doing so. 

What happens to the research data?
The raw data will be kept in secure storage until it is processed. The data will be purged
of  all  details  that  could  potentially  identify  you  personally  and  only  members  of  the
research team will have access to it. You are free to ask to see your data to ensure you
are  happy  it  cannot  be  used  to  identify  you  in  any  way.  Anonymous  data  will  be
preserved for  no longer  than necessary as  per  institutional  guidelines,  however  you
should be aware this period could be indefinite. If you choose to withdraw from the study
before its completion date, your data will not be included in the findings of the study and
will be securely destroyed. After the completion date, your anonymous data will remain
as a part of the findings and cannot be withdrawn. 

How will the research be reported?
The findings of the present investigation may be used in part or whole for presentations 
or publications. At request, you are eligible to receive an overview of the findings, and/or 
a copy of any presentations or publications produced. No individual will be identified or 
linked to the data.

How can I find out more information? 175



Please contact the researcher directly. Neil Thomas,  Department of Medical and Sport
Sciences, Active Ageing Research Group, Faculty of Health and Science, University of
Cumbria, Bowerham Road, Lancaster,  LA1 3JD. Neil.Thomas@Cumbria.ac.uk. 01524
590910.  Alternatively  you can  send  an  email  to  the  Active  Ageing  Research  Group
account for further communication activeageing@cumbria.ac.uk.

What if I want to complain about the research?
Initially you should contact the researcher directly. However, if you are not satisfied or
wish to make a more formal complaint you should contact Professor Diane Cox, Director
of  Research  Office,  University  of  Cumbria,  Bowerham  Road,  Lancaster,  LA1  3JD.
diane.cox@cumbria.ac.uk 
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'Visual Contributions to Postural Stability during Stationary Target
Fixations, and saccadic and Smooth Pursuit Eye Movements'

Participant Information Sheet

About the study
This research aims to investigate balance in response to a number of different visual
scenes. The purpose is to develop our understanding of visual contributions to postural
control. 

Some questions you may have about the research project:

Why have you asked me to take part and what will I be required to do? 
This investigation requires healthy male and female participants aged 18 – 35 who are
free  from  from  balance  disorders,  special  susceptibility  to  motion  sickness,  or
degenerative eye conditions. You will be required to stand upright around 1 metre in front
of a projection screen. You will then be asked to observe a total of 13 different visual
scenes, including stationary and moving targets with different background environments.
Your balance in response to these scenes will be assessed with a force platform, and
your ‘point  of  view’ observations (where you are looking)  will  be monitored with eye
tracking technology. You will be required to attend the ‘Bishops Cross drama studio’ at
the University of Cumbria Lancaster campus once for testing, which will last around one
hour.

What if I do not wish to take part or change my mind during the study?
Your participation in the study is entirely voluntary. You are free to withdraw from the
study at any time without having to provide a reason for doing so. 

What happens to the research data?
The raw data will be kept in secure storage until it is processed. The data will be purged
of  all  details  that  could  potentially  identify  you  personally  and  only  members  of  the
research team will have access to it. You are free to ask to see your data to ensure you
are  happy  it  cannot  be  used  to  identify  you  in  any  way.  Anonymous  data  will  be
preserved for  no longer  than necessary  as  per  institutional  guidelines,  however  you
should be aware this period could be indefinite. If you choose to withdraw from the study
before its completion date, your data will not be included in the findings of the study and
will be securely destroyed. After the completion date, your anonymous data will remain
as a part of the findings and cannot be withdrawn. 

How will the research be reported?
The findings of the present investigation may be used in part or whole for presentations 
or publications. At request, you are eligible to receive an overview of the findings, and/or 
a copy of any presentations or publications produced. No individual will be identified or 
linked to the data.
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How can I find out more information?
Please contact the researcher directly. Neil Thomas,  Department of Medical and Sport
Sciences, Active Ageing Research Group, Faculty of Health and Science, University of
Cumbria, Bowerham Road, Lancaster,  LA1 3JD.  Neil.Thomas@Cumbria.ac.uk. 01524
590910.  Alternatively  you can  send  an  email  to  the  Active  Ageing  Research  Group
account for further communication activeageing@cumbria.ac.uk.

What if I want to complain about the research?
Initially you should contact the researcher directly. However, if you are not satisfied or
wish to make a more formal complaint you should contact Professor Diane Cox, Director
of  Research  Office,  University  of  Cumbria,  Bowerham  Road,  Lancaster,  LA1  3JD.
diane.cox@cumbria.ac.uk 
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'Visual Contributions to Postural Stability during Stationary Target
Fixations, and saccadic and Smooth Pursuit Eye Movements'

Participant Consent Form

Please answer the following questions by circling your responses:

Have you read and understood the information sheet about this study?   YES    NO

Have you been able to ask questions and had enough information?   YES    NO

Do you understand that you are free to withdraw from this study at any time, and without 
having to give a reason for withdrawal?   YES    NO

Do you understand that video obtained from the eye tracking equipment will include your 
own field of vision and at no point will your face be recorded?   YES    NO

Your data will be anonymised before being analysed. Do you give permission for members 
of the research team to have access to your anonymised data?   YES    NO

Do you understand that anonymised data will be kept for no longer than necessary as per 
institutional guidelines, however, this period could be indefinite?   YES    NO 

If you leave the study before its completion date, your data will be removed from the findings
and securely destroyed. 

Do you understand that after the completion date, your anonymised data will remain a part of
the findings and cannot be withdrawn?   YES    NO  

Please sign here if you wish to take part in the research and feel you have had enough 
information about what is involved:

Signature of participant:........................................... Date:.................

Name (block letters):............................................................................

Signature of researcher:........................................... Date:.................

Name (block letters):............................................................................
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'The effects of eye movements on balance’
Participant Information Sheet

About the study
This research aims to investigate the effects of eye movements on balance. The purpose
is to develop our understanding of visual contributions to postural control. 

Some questions you may have about the research project:

Why have you asked me to take part and what will I be required to do? 
This investigation requires healthy male and female participants between the ages of 18-
35 and 60-90 years who are free from balance disorders, special susceptibility to motion
sickness,  or  degenerative eye conditions.  You will  be required to walk  along a 5-10
metre walkway 6 times (with breaks) whilst viewing stationary and moving targets on a
projection screen located ahead of you. Your balance in response to these visual scenes
(during walking) will be assessed with 3D motion analysis equipment, and your ‘point of
view’  observations  (where  you  are  looking)  will  be  monitored  with  eye  tracking
technology.  You will  be  required to attend the University  “Foro Italico”  biomechanics
laboratory once for testing, which will last around one hour.

What if I do not wish to take part or change my mind during the study?
Your participation in the study is entirely voluntary. You are free to withdraw from the
study at any time without having to provide a reason for doing so. 

What happens to the research data?
The raw data will be kept in secure storage until it is processed. The data will be purged
of  all  details  that  could  potentially  identify  you  personally  and  only  members  of  the
research team will have access to it. You are free to ask to see your data to ensure you
are  happy  it  cannot  be  used  to  identify  you  in  any  way.  Anonymous  data  will  be
preserved for  no longer  than necessary as  per  institutional  guidelines,  however  you
should be aware this period could be indefinite. If you choose to withdraw from the study
before its completion date, your data will not be included in the findings of the study and
will be securely destroyed. After the completion date, your anonymous data will remain
as a part of the findings and cannot be withdrawn. 

How will the research be reported?
The findings of the present investigation may be used in part or whole for presentations 
or publications. At request, you are eligible to receive an overview of the findings, and/or 
a copy of any presentations or publications produced. No individual will be identified or 
linked to the data.

How can I find out more information?
Please contact  the researcher  directly.  Neil  Thomas,  Presso Prof.  Andrea Macaluso,
Dipartimento  di  Scienze Motorie  Umane e della  Salute  -  Movimento Umano e dello
Sport,  Università  di  Roma  “Foro  Italico”  Piazza  L.  de  Bosis  6,  00135.
Neil.Thomas@Cumbria.ac.uk. +39.3288036.997. 
What if I want to complain about the research?
Initially you should contact the researcher directly. However, if you are not satisfied or
wish  to  make  a  more  formal  complaint  you  should  contact  Prof.  Arnaldo  Zelli,180



Dipartimento  di  Scienze  Motorie  Umane e  della  Salute  -  Scienze  Umane e  Sociali,
Università di Roma “Foro Italico” Piazza L. de Bosis 6, 00135. arnaldo.zelli@uniroma4.it,
+39.0636733.368
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'The effects of eye movements on balance’

Participant Consent Form

Please answer the following questions by circling your responses:

Have you read and understood the information sheet about this study?   YES    NO

Have you been able to ask questions and had enough information?   YES    NO

Do you understand that you are free to withdraw from this study at any time, and without 
having to give a reason for withdrawal?   YES    NO

Do you understand that video obtained from the eye tracking equipment will include your 
own field of vision and at no point will your face be recorded?   YES    NO

Your data will be anonymised before being analysed. Do you give permission for members 
of the research team to have access to your anonymised data?   YES    NO

Do you understand that anonymised data will be kept for no longer than necessary as per 
institutional guidelines, however, this period could be indefinite?   YES    NO 

If you leave the study before its completion date, your data will be removed from the findings
and securely destroyed. 

Do you understand that after the completion date, your anonymised data will remain a part of
the findings and cannot be withdrawn?   YES    NO  

Please sign here if you wish to take part in the research and feel you have had enough 
information about what is involved:

Signature of participant:........................................... Date:.................

Name (block letters):............................................................................

Signature of researcher:........................................... Date:.................

Name (block letters):............................................................................
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'Gli effetti dei movimenti oculari sull’equilibrio’

Foglio informativo per i partecipanti

Il progetto
La  nostra  ricerca  è  volta  a  studiare  gli  effetti  dei  movimenti  oculari  sull’equilibrio.
L’obiettivo  è  di  comprendere  come  la  stimolazione  visiva  contribuisca  al  controllo
posturale. 

Alcune domande che potreste avere riguardo il progetto di ricerca:

Perché mi avete chiesto di prendere parte al progetto e cosa mi si chiede di fare? 
Lo studio richiede partecipanti ambosessi in salute di età compresa tra i 18-35 anni e
60-90 anni che non soffrano di disturbi dell’equilibrio, chinetosi (mal di mare, mal d’auto,
ecc.), o patologie degenerative dell’occhio. Le sarà richiesto di camminare lungo una
passerella di 5-10m per 15 volte (con le dovute pause) fissando oggetti mobili o fissi
proiettati su uno schermo di fronte alla pedana. L’andamento della sua camminata, in
risposta agli stimoli visivi sullo schermo, sarà registrato tramite strumentazione di analisi
del movimento in 3D e il suo “punto di vista” (dove sta guardando) sarà monitorato con
tecnologia  di  tracciamento  visuale  non  invasiva.  Le  chiederemo  di  recarsi  presso
l’Università degli Studi di Roma Foro Italico per sottoporsi al test che durerà circa un’ora.

Cosa succede se non desidero partecipare o cambio idea durante il  corso del
progetto? 
La sua partecipazione è completamente volontaria. E’ libero di ritirarsi dal progetto in
qualsiasi momento senza dover fornire giustificazioni. 

Cosa accade ai dati acquisiti?
I dati grezzi saranno conservati in modo sicuro fino all’elaborazione finale del progetto.
Ogni elemento raccolto sarà reso anonimo e resterà accessibile solo ai membri della
ricerca. E’ libero di prendere visione dei propri dati per assicurarsi che non possono
essere utilizzati per identificarla in alcun modo. I dati anonimi saranno conservati per il
tempo  strettamente  necessario  secondo  le  linee  guida  istituzionali  (il  periodo,  al
momento, è indefinito). Se sceglie di abbandonare il progetto prima del termine, i suoi
dati saranno cancellati e non inclusi nell’elaborato. Al termine dello studio, i suoi dati resi
anonimi costituiranno parte integrante del progetto e non potranno essere ritirati. 

Come sarà utilizzato il progetto di ricerca?
I risultati del progetto saranno utilizzati come presentazioni o pubblicazioni. Su richiesta,
è libero di richiedere l’elaborazione finale dei dati e/o una copia delle presentazioni o
pubblicazioni. Nessun partecipante potrà essere identificato tramite i dati raccolti.

Come posso trovare maggiori informazioni?
Si prega di contattare direttamente i membri del progetto di ricerca: Neil Thomas, presso
Prof.  Andrea  Macaluso,  Dipartimento  di  Scienze  Motorie  Umane  e  della  Salute  -
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Movimento Umano e dello Sport, Università di Roma “Foro Italico” Piazza L. de Bosis 6,
00135. Neil.Thomas@Cumbria.ac.uk. +39.3288036.997. 

Come posso fare un reclamo?
Inizialmente  può  fare  riferimento  direttamente  ai  ricercatori.  Per  un  reclamo formale
rivolgersi a: Prof. Arnaldo Zelli, Dipartimento di Scienze Motorie Umane e della Salute -
Scienze Umane e Sociali, Università di Roma “Foro Italico” Piazza L. de Bosis 6, 00135.
arnaldo.zelli@uniroma4.it, +39.0636733.368
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'Gli effetti dei Movimenti Oculari sull’Equilibrio’ 

 
Modulo di consenso 

 
 

Rispondere alle seguenti domande cerchiando la risposta desiderata: 
 
 
Ha letto e compreso tutte le informazioni riguardo il progetto?                                     SI    NO 
 
E’ stato in grado di rispondere alle domande precedentemente sottoposte?               SI    NO 
 
Sa che è libero di abbandonare il progetto in qualsiasi momento e senza dover dare 
spiegazioni?                                                                                                                  SI    NO 
 
E’ al corrente che il video ottenuto dal dispositivo di localizzazione visuale registrerà il suo 
campo visivo ma che non apparirà mai il suo volto?                                                     SI    NO 
 
I suoi dati saranno resi anonimi prima di procedere con l’analisi. Autorizza i gestori del 
progetto ad avere accesso ai suoi dati resi anonimi?                                                   SI    NO 
 
Sa che i dati resi anonimi saranno conservati per il tempo strettamente necessario come da 
linee guida istituzionali? (Questo periodo è, al momento, indefinito)                            SI    NO 
 
Se abbandona il progetto prima del termine, I suoi dati saranno rimossi dalla ricerca e 
cancellati in modo sicuro.  
 
E’ al corrente che, dopo la data di completamento della ricerca, i dati anonimi faranno parte 
dei risultati e non possono essere ritirati?                                                                    SI    NO 
 
Si prega di firmare per prendere parte al progetto, dopo aver ottenuto sufficienti informazioni 
in merito: 
 
 
Firma del partecipante:........................................................... Data:....................................... 
 
 
Nome (in maiuscolo):............................................................................................................... 
 
 
Firma del responsabile progetto:............................................ Date:..................................... 
 
 
Nome (in maiuscolo):............................................................................................................... 
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'Dynamic balance, eye movements and gaze allocation’

Participant Information Sheet

About the study

This research aims to investigate the effects of eye movements on

balance  and  gaze  strategies.  The  purpose  is  to  develop

understanding of visual contributions to postural control. 

Some questions you may have about the research project:

Why have you asked me to take part and what will I be required
to do? 

This  investigation  requires  healthy  male  and  female  participants

between the ages 18-35 and 65-90 years who are free from balance

disorders and degenerative eye conditions. You will  be required to

stand still and walk forward for 4 metres in a university waiting room,

whilst viewing a member of the research team who will also stand still

and walk. There will be around 5-10 short trials, with breaks, and you

will be required to attend the University of Cumbria once for testing

which will last around an hour. Your balance during the trials will be

assessed with small acceleration measuring devices, and your ‘point

of view’ observations (where you are looking) will be monitored with

eye tracking technology. 

What if I do not wish to take part or change my mind during the
study? 186



Your participation in the study is entirely voluntary. You are free to

withdraw  from the  study  at  any  time  without  having  to  provide  a

reason for doing so. 

What happens to the research data?

The raw data will be kept in secure storage until it is processed. The

data will  be purged of  all  details that could potentially identify you

personally and only members of the research team will have access

to it. You are free to ask to see your data to ensure you are happy it

cannot be used to identify you in any way. Anonymous data will be

preserved for no longer than necessary as per institutional guidelines,

however you should be aware this period could be indefinite.  If you

choose to withdraw from the study before its completion date, your

data  will  not  be  included in  the  findings  of  the  study  and  will  be

securely destroyed. After the completion date, your anonymous data

will remain as a part of the findings and cannot be withdrawn. 

How will the research be reported?

The findings of the present investigation may be used in part or whole

for presentations or publications. At request, you are eligible to 

receive an overview of the findings, and/or a copy of any 

presentations or publications produced. No individual will be identified

or linked to the data.

How can I find out more information?
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Please contact the researcher directly.  Neil  Thomas,  University of

Cumbria,  Bowerham  Road,  Lancaster,  LA1  3JD,

neil.thomas@uni.cumbria.ac.uk

What if I want to complain about the research?

Initially you should contact the researcher directly.  However, if  you

are not satisfied or wish to make a more formal complaint you should

contact Prof.  Diane Cox, Director of Research Office, University of

Cumbria,  Bowerham  Road,  Lancaster,  LA1  3JD,

diane.cox@cumbria.ac.uk
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'Dynamic balance, eye movements and gaze allocation’

Participant Consent Form

Please answer the following questions by circling your responses:

Have you read and understood the information sheet about this study?   
YES    NO

Have you been able to ask questions and had enough information?   
YES    NO

Do you understand that you are free to withdraw from this study at any 
time, and without having to give a reason for withdrawal?   
YES    NO

Do you understand that video obtained from the eye tracking equipment 
will include your own field of vision and at no point will your face be 
recorded?   
YES    NO

Your data will be anonymised before being analysed. Do you give 
permission for members of the research team to have access to your 
anonymised data?   
YES    NO

Do you understand that anonymised data will be kept for no longer than 
necessary as per institutional guidelines, however, this period could be 
indefinite?   
YES    NO 

If you leave the study before its completion date, your data will be 
removed from the findings and securely destroyed. 

Do you understand that after the completion date, your anonymised data
will remain a part of the findings and cannot be withdrawn?   
YES    NO  189



Please sign here if you wish to take part in the research and feel you 
have had enough information about what is involved:

Signature of participant:........................................... Date:.................

Name (block letters):............................................................................

Signature of researcher:........................................... Date:.................

Name (block letters):............................................................................
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Appendix G

Mini mental status examination
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Mini-Mental State Examination (MMSE)

Patient’s Name:                                                                                  Date:                           

Instructions: Score one point for each correct response within each question or activity.

Maximum
Score

Patient’s
Score

Questions

5 “What is the year?  Season?  Date?  Day?  Month?”

5 “Where are we now?  State?  County?  Town/city?  Hospital?  Floor?”

3

The examiner names three unrelated objects clearly and slowly, then
the instructor asks the patient to name all three of them. The patient’s
response is used for scoring. The examiner repeats them until patient
learns all of them, if possible.

5
“I would like you to count backward from 100 by sevens.” (93, 86, 79,
72, 65, …)
Alternative: “Spell WORLD backwards.” (D-L-R-O-W)

3 “Earlier I told you the names of three things.  Can you tell me what
those were?”

2 Show the patient two simple objects, such as a wristwatch and a pencil,
and ask the patient to name them.

1 “Repeat the phrase: ‘No ifs, ands, or buts.’”

3 “Take the paper in your right hand, fold it in half, and put it on the floor.”
(The examiner gives the patient a piece of blank paper.)

1 “Please read this and do what it says.” (Written instruction is “Close
your eyes.”)

1 “Make up and write a sentence about anything.” (This sentence must
contain a noun and a verb.)

1

“Please copy this picture.”  (The examiner gives the patient a blank
piece of paper and asks him/her to draw the symbol below.  All 10
angles must be present and two must intersect.)

30 TOTAL
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Appendix H

Snellen chart
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