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Ice stream motion facilitated by a
shallow-deforming and accreting bed
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Simon J. Carr6, Jeremy C. Ely4, Adriano Ribolini7, Wojciech Wysota8 & Izabela Szuman9

Ice streams drain large portions of ice sheets and play a fundamental role in governing their

response to atmospheric and oceanic forcing, with implications for sea-level change.

The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed

deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we

present a comprehensive, multi-scale study of the internal structure of mega-scale glacial

lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at

macro- and microscales, using multiple techniques including X-ray tomography, thin sections

and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy,

kinematics, granulometry and petrography. The consistency of the physical and geological

properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal

conditions. This implies that ice stream basal motion on soft sediment beds during MSGL

formation is accommodated by plastic deformation, facilitated by continuous sediment supply

and an inefficient drainage system.
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I
ce streams play a fundamental role in the mass balance of ice
sheets1. They have been referred to as the arteries of an ice
sheet, because they can discharge 490% of their mass flux2,3.

Model predictions of ice sheet response to atmospheric and
oceanic forcing and associated sea-level fluctuations could
be greatly improved by a more complete understanding of
ice streams and their mechanisms of flow. Rare glimpses of ice
stream beds, through geophysical and borehole observations4,
have led to two possible explanations of the mechanisms
governing ice stream flow: (i) basal sliding facilitated by water
pressures at overburden5,6, with the ice stream effectively
decoupled from its bed7, and (ii) basal motion accommodated
via deformation of either thick (several metres)8,9 or thin
(centimetres to decimetres)10,11 layers of the underlying ‘soft’
sediments. Resolution of this debate has fundamental
implications for subglacial sediment erosion, transport and
deposition. A better understanding of processes at the ice
stream bed could also lead to the development of more
sophisticated and robust models of ice stream flow dynamics
and, ultimately, ice sheet mass balance and sea-level change.
For example, recent modelling has highlighted that the
relationship between basal friction and sliding is a key
‘unknown’ when attempting to model Antarctica’s future
contribution to sea-level rise12.

When ice stream beds are associated with the presence of soft
sediments, they are typically organized into corrugations known
as mega-scale glacial lineations (MSGLs)13. These extremely
elongated landforms have been observed evolving under an
Antarctic ice stream14 and are common along palaeo-ice stream
troughs proximal to the present day Antarctic ice streams15 and

in numerous palaeo ice-sheet settings as well, both onshore and
offshore16,17. As MSGLs are produced at the ice stream bed, an
analysis of their sedimentary properties can contribute to
the debate on their genesis18–20 and advance understanding of
ice stream motion by potentially distinguishing between basal
sliding and bed deformation as a mechanism of fast flow.

During the last glaciation, the SE sector of the Scandinavian Ice
Sheet covered much of the Baltic region and was drained by
a series of ice streams16,21. This study focuses on the Odra
palaeo-ice stream (OPIS), located in Poland near the city of
Poznań, close to the B21 ka Leszno phase ice margin,
representing the local last glacial maximum22,23. The bed of the
OPIS, exposed across a region of over 1,000 km2 in the
Wielkopolska Lowland, is underlain by a thick (B30 m)
sequence of Quaternary sediments and represents one of the
few regions in onshore Europe to show a well-preserved
assemblage of MSGLs.

The OPIS MSGLs are characterized by the same long axis
orientation (B130�N), a regular spacing (crest-to-crest distance)
of 500–700 m, and a generally low relief of 2–4 m (Fig. 1), which
is consistent with previous measurements from a variety of ice
stream beds24. Some of the MSGLs can be traced continuously for
over 16 km and they are thought to have been originally much
longer, with deglacial meltwater channels and the extensive
urbanization of Poznań interrupting their continuity23.

Here we present a suite of detailed sedimentological analyses
from ten sites located across the best-preserved part of the OPIS
MSGL field, including ridge crests and flanks. Results reveal, at
all sites and depths, that the sediment has near-identical
granulometry, strong and consistent macro- and microfabric,
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Figure 1 | Map and location of sample sites. The OPIS bed, Poland (a). It comprises a series of MSGLs indicative of a NW–SE ice flow (blue arrow) with

considerable elongation (b) and is characterized by very low relief (c). Ten trenches (labelled with capital letters) (b,d) along the crests and flanks of the

MSGLs were opened and analysed in detail (e, showing site K).
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and similar petrography, whereas the stratigraphy is
represented by a single massive unit of silty–sandy diamicton.
The homogenization of the OPIS bed and the fine-grained nature
of the sediment indicate ice stream basal conditions dominated by
continuous sediment accretion and shallow, but pervasive,
deformation during the formation of MSGLs.

Results
Stratigraphy and sedimentology. With the exception of two
relatively small structures (one ice wedge cast at site T and
some rootlets at site D), all ten sites present an identical
stratigraphy, with only slight variations in the modern soil
depth, typically 0.3–0.5 m from the ground surface (Fig. 1e).
The sediment body comprising the bulk of the MSGLs’
relief is characterized by a homogeneous single unit of
massive, matrix-supported, silty–sandy diamicton, lacking
any evidence of outcrop-scale glaciotectonism (for example,
thrusting and folding; Supplementary Fig. 1). The
diamicton appears yellow, apart from a few rare patches where
calcification has occurred, usually affecting areas o200 cm2.
Gravel-sized clasts (2–64 mm) are rare and cobbles (464 mm)
are extremely rare. At no site was any other sedimentary unit
exposed.

The ground penetrating radar (GPR) reached the water
table (typically 2–3 m) and, with the exception of a few infilled
palaeo-channels and small oblique and discordant reflections,
interpreted as ice wedge casts, the 410 km of GPR lines revealed
a uniform radar stratigraphy. This indicates that the trench data
are representative of the MSGL field. All 200 MHz acquisitions,
an example of which can be seen in Fig. 2a, show a series of
surface waves followed by only one clear subsurface reflection, the
depth of which corresponds to that of the soil base.
This reflection, almost perfectly parallel to the surface, indicates
the stratigraphic change from the organic, aerated soil above to
the diamicton below. The slight irregularity of this interface, the
depth of which varies from 0.3 to 0.5 m from the ground level
(verified by augering and observations in the trenches), is most
likely to be due to agricultural activity. No other reflections are
evident below this interface, suggesting either a complete absence
of structures or a lack of penetration or resolution. Given the
sandy nature of the sediment, it is unlikely that penetration was
limited to only the first 0.3–0.5 m of the profile. A complete lack
of structures at greater depths is confirmed by all 40 MHz
acquisitions (for example, see Fig. 2b). Besides the usual surface
waves and their multiples, and the soil–diamicton interface
reflector and its multiple, all 40 MHz profiles reveal no other
reflector to a depth of B2–3 m where a series of strong reflectors
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Figure 2 | Two GPR profiles from the 200 and 40 MHz surveys. Details are enlarged and coloured in correspondence to the auger samplings (WP) and, in

two cases, further enlargements show the strongest reflectors identified within each profile. In a, the only significant reflector besides the surface waves is

found at a variable depth of 0.3–0.5 m, and augering and trench observations confirm this to be the boundary between the organic soil and the diamicton

below. In b, the only significant reflector is verified at a depth of 1.8–2.6 m and augering confirms this to correspond to the water table/capillarity fringe

system within the diamicton. All other reflectors, parallel to the surface or the water table, are interpreted as multiples.
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are generated corresponding with the water table and capillary
fringe system (verified by augering and observations in the
trenches). This follows the same geometry as the topography,
although it becomes slightly shallower in the deepest part of the
profiles (MSGL troughs).

Macroscale fabric. Clast a-axis macrofabric was measured at
multiple depths in ten sites across the OPIS bed, including some
that are kilometres apart along the same MSGL crest (for
example, site T and E) and others that are distributed across the
same MSGL flank, from near the trough to the crest (site T, X, Y
and Z). The azimuth and dip of a minimum of 30 clasts, with an
elongation ratio Z2:1 (a:b axes) and typically a-axis in the range
of 5–20 mm, were measured from an area of B30� 10 cm2 at
each depth interval. Clast macrofabric along the crest of, or
across, the same MSGL was found to be similar, with no evidence
of any systematic variation horizontally and vertically (such as a
herringbone pattern) (Supplementary Table 1 and Fig. 3).
Macrofabrics are generally consistent across all sites and depths,
showing shallow dips and a dominant NW–SE direction,
concordant with MSGL long axis orientation (Supplementary
Table 1 and Fig. 4a). Eighty per cent of all S1 eigenvectors are
within 121.5(301.5)±11.5�N. The normalized eigenvalues of the
macrofabric data are very high, with a mean value of 0.75.

The vast majority of fabric shapes, derived from the ratios
between the three main eigenvalues plotted on an equilateral
ternary diagram25, is concentrated on the cluster apex (Fig. 4b).
This indicates a very low isotropic index (that is, observations
confined to a single plane or axis) and a very high elongation
index (that is, a strong preferred orientation and most
observations parallel to each other).

Thin section analysis. Microscale analysis of orientated thin
sections of the diamicton within the MSGLs reveals a complex,
but systematic, array of deformation fabrics, which can be
interpreted as having formed by the passive rotation of sand-
grade particles, into the planes of the foliations, defining a
number of clast two-dimensional (2D) microfabrics26,27. Initial
analysis of all the thin sections revealed that the composition,
texture and structure of diamicton are uniform across the study
area. Consequently, subsequent analysis of the microfabrics
focused on site C, enabling any changes in the relative intensity
and/or style of deformation, upward through the sediment
profile, to be examined in detail. In thin sections, the diamicton at
this site appears composed of fine- to medium-grained,
matrix-supported, silty sand containing scattered, angular to
well-rounded granule, to small pebble-sized rock fragments
(limestone, granite, sandstone and schistose metamorphic
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rocks). Sand grains are mainly composed of monocrystalline
quartz and subordinate amounts of feldspar and exhibit preferred
shape alignments. The geometry of these microstructures in each
thin section were analysed using a standard methodology26. An
example of the resultant ‘microstructural map’ is shown in Fig. 5.
This analysis reveals that deformation was dominated by foliation
development with the lack of folding and/or faulting. The clast
2D microfabrics define a conjugate set of Riedel shears, as well as
a subhorizontal shear foliation (Fig. 5a,b). These probably
developed in response to shearing imposed by the overriding
ice, with the subhorizontal foliation having formed parallel to the
base of the ice (see Fig. 5a). The geometry, orientation and
kinematic indicators (for example, asymmetry of S-shaped 2D
microfabrics) recorded by the fabrics (see Fig. 5a,b) are consistent
throughout the sediment profile and record an SE-directed sense
of shear, coincident with the long axes of the MSGLs and the
regional ice flow pattern.

A prominent, subvertical foliation present within the lower
part of the diamicton sequence locally overprints the earlier shear
fabrics and is interpreted as recording the subsequent dewatering
of the sediments within the core of the MSGL. Dewatering and
consolidation would have been driven by the ice overburden
pressure. This may have occurred penecontemporaneous with
landform development, or shortly after the cessation of fast ice
flow when the diamicton was unconsolidated and still able to
respond to the dewatering.

3D-computed X-ray microtomography analysis. The three-
dimensional (3D) visualization of the particle bulk phase of all
X-ray microtomography (mCT) scanned samples highlights that

within a complex overall fabric signature, two distinctive
geometries are represented by chains of particles (Fig. 6a).
The dominant geometry is of discrete planes of particles with
a-axes dipping apparently up-glacier at B24� relative to the
horizontal, whereas the second geometry has a more variable
(mean of B10� to the horizontal) down-ice dip (Fig. 6b). These
compare well with the two main Riedel shear geometries identi-
fied in vertical thin sections (noted above). Quantification of
particle fabrics from all scanned samples (a typical example of the
data is shown in Fig. 6c) illustrates a distinctive bimodal pattern,
with the main modes parallel to MSGL orientation (and inferred
ice flow direction). Distinctive secondary modes are oriented
transverse to inferred ice-flow direction and are most strongly
developed in the finer particle fractions (b-axis o500 mm). Low
resulting V1 dip angles are a statistical artifact of eigenvector
analysis of samples with multiple fabric modes. Derived
eigenvalues remain broadly consistent between samples,
representing a strong girdle fabric shape in all samples. The
geometry and kinematics recorded by the mCT data sets are
spatially consistent: vertically within the sample, vertically within
each trench and between sites, and record a sense of shear that is
parallel to the orientation of the MSGLs and inferred ice-flow
direction.

Petrography and granulometry. The clast (2–4 mm) petrography
was determined on a minimum of 300 grains per depth
interval, with a distinction made between weathering-resistant
components including sedimentary, flint, quartz and (red, light
and dark-coloured) crystalline lithologies, and components
susceptible to postdepositional weathering. Overall, the
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composition of lithologies is consistent across all samples (Fig. 7).
Within the weathering-resistant components, red crystalline
lithologies vary from 39 to 54%, light crystalline from 13 to 21%
and dark crystalline from 2 to 5%. The quartz component
comprises between 15 and 28%. Flint is always o3%, whereas
sedimentary components account for between 3 and 11%. A

detrended correspondence analysis shows minimal variability in
terms of s.d. units (axis 1¼ 0.28 and axis 2¼ 0.24) and a principal
component analysis indicates that Euclidean distance, in multi-
dimensional space, between the samples is very small and no
depth or site clustering pattern is revealed. The total composition
includes Palaeozoic limestone sourced from the Baltic Basin and
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crystalline rocks from the Scandinavian Shield, thus indicating a
far-travelled origin for much of the glacial sediment. Similar
compositions have been found in Germany and Denmark28–30,
and indicate deposition by ice of north-easterly provenance.

The o2 mm fraction of all diamicton samples is largely
composed of sand (62–71%) with a minor component of silt
(29–38%) and low clay contents (4–9%) (Fig. 4c). Grain size
distributions are also consistent, even between sites as far apart as
6 km; within any particle size interval, the relative frequency
spread is less than 5% (Fig. 4d). No granulometric trends were
found either vertically or horizontally across all sites.

Discussion
In summary, ten sites were investigated and sampled at a high
vertical resolution, within the same MSGL and across multiple
MSGLs, and there are no obvious differences in clast macro- or
microfabric (orientation and strength), petrography and
granulometry. Sediment homogeneity might be responsible for
the lack of visible evidence of outcrop-scale thrusting or folding, as
these are difficult to identify when they do not involve deformation

of distinctively different materials. However, given the density of
sampling, a variation in fabric should have been evident had
faulting or thrusting been present. Moreover, based on observa-
tions from extant9,31 and palaeo32 ice stream beds, diamictons are
typically porous and weak, with the water content close to the
liquid limit and therefore precluding folding or thrusting.

The preservation of the OPIS MSGLs, coupled with the
homogenous and massive architecture of the diamicton, and the
rare presence of postformational periglacial, glaciofluvial and
fluvial disturbances demonstrates that these landforms and their
internal structure reflect basal processes occurring beneath the
active ice rather than in ice-marginal or proglacial settings.
The vertical and horizontal consistency of the clast macro-
and microfabrics indicates that the diamicton has experienced
pervasive shearing. Theoretical10, experimental33,34 and empirical
data7,11,35 indicate that the depth of deformation in (Coulomb
plastic) diamicton is likely to be less than a few decimetres.
Pervasive deformation to greater depths could theoretically be
achieved under three conditions: ploughing by clasts held in the
basal ice11, bridging across grain networks36,37 or shearing zone
migration due to water pressure fluctuations10. All three
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Figure 7 | Petrographic composition of all samples A1 to Z5. The diagram, which shows the content of weathering-resistant components at every site

(per letter code, y-axis) and depth interval (per number code, increasing depth, y-axis), demonstrates consistency across and within sites.
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conditions require the presence of a coarse-grained diamicton
and/or large clasts, neither of which are found in the OPIS bed.
Furthermore, under conditions of clast ploughing or grain
bridging, a thick deforming layer should theoretically display a
decreasing-with-depth strain profile, which could be expected to
be detected by changes in granulometry, petrography or fabric
strength; however, this was not found. As such, our interpretation
is that ice stream flow over the sediment was sustained
by pervasive deformation in a thin shearing zone, with the
41.4-m-thick homogenized diamicton being the product of
continuous subglacial accretion38. Under these conditions, the
homogeneity of the sediment body and the lack of outcrop scale
glacitectonism suggest a constant supply of sediment and largely
invariant boundary conditions such as basal water pressure, basal
temperature and sediment strain rate.

Two possible scenarios might be envisaged to link the
sedimentary processes to the formation of the MSGLs. One
scenario is that pervasive deformation of the bed was
concomitant with the formation of the MSGLs, with the
implication that the origin of these landforms is constructional
during bed accretion. The other scenario is that the strain
signature was previously imposed on the sediment and a later
phase of ice stream flow generated the MSGLs by erosion. The
sedimentological characteristics (weak and inconsistent fabric,
facies variability and the presence of sediment rafts) found on at
least one palaeo ice stream bed39, resting on the hard bedrock of
the Canadian Shield, partially support the erosional hypothesis.
However, none of these characteristics have been verified in the
OPIS bed, which rests on a thick sequence of ‘soft’ Quaternary
deposits. Some theories of MSGL formation have advocated
erosion of the bed either by ice keels (groove-ploughing theory18)
or water flow (megaflood19 or rilling instability20 theories). Sites
T, X, Y and Z represent a transect from the crest to near the
bottom of the trough and show the same sediment granulometry,
demonstrating no depletion of fines related to flowing water, even
towards the base of the troughs. Combined with an absence of
any meltwater-related deposits, these observations question the
idea of MSGL formation by flowing subglacial water or rilling
erosion. The groove-ploughing theory18 suggests that basal ice
keels are formed either by ice streaming over rough bedrock
upstream of the MSGLs or by an area of flow convergence.
However, the thick sequence of Quaternary sediments in the
studied region must have precluded the formation of
bedrock-related ice keels and detailed reconstructions provide
no evidence of ice flow convergence21,23. The theory also
suggests that during the formation of the MSGLs, sediment is
redistributed from the landform trough to the flanks. As
diamicton is squeezed laterally into intervening ridges, a
herringbone signature is generated in the fabric18. Although it
is possible that the greater strain in the downflow direction
might partially mask it, no evidence of any systematic variation in
fabric was found across the OPIS MSGLs, vertically or
horizontally, both at the macro and at the microscale. The
groove-ploughing theory also predicts that MSGLs width
increases and their height decreases downstream, as ice keels
melt due to frictional heating18. However, the (modest)
morphometric variability of the OPIS MSGLs shows no
evidence of downstream changes. Taken together, these
observations provide little support for the formation of the
OPIS MSGLs via an erosional mechanism, thus suggesting that
pervasive deformation of the bed was concomitant with the
evolution of the MSGLs. Indeed, micro and macrofabric, at all
sites and depths, have the same orientation as the MSGL main
axes. Had the strain signature been previously imposed on the
sediment, this correspondence would require the earlier ice flow
to have had the exact same orientation of the subsequent

(topographically unconstrained) ice stream that eroded the
MSGLs. Instead, the observations are more easily explained by
sediment deposition being coeval with landform shaping, with
MSGLs representing constructional features.

Although the actual process of moulding the bed into the
ice-flow parallel ridges and troughs (MSGLs) remains elusive, the
data presented here indicate that they were formed through
continuous sediment accumulation. Thus, to generate an uneven
topography, a higher rate of accretion must have selectively
occurred towards the crests of the MSGLs. Significantly, this
study demonstrates that the OPIS MSGLs record ice stream
flow via thin-skinned deformation, under largely invariant
sedimentary and hydrological basal conditions. Specifically,
indicative of an inefficient, distributed drainage system are the
continuity of the MSGLs with a lack of evidence for a major
meltwater drainage network; the homogeneity of the diamicton,
that is, no depletion of fines; and the absence of deformational
structures related to water pressure fluctuations and eluviation40.

The MSGLs analysed here are morphologically similar to those
of many other settings worldwide24. Their sedimentology is also
compatible with most other studies of soft ice stream beds41 and,
in particular, with the geophysical and borehole observations of
an unconsolidated, porous diamicton corresponding to the
acoustically transparent seismic horizon that characterizes most
Antarctic ice stream beds32,42. Given the widespread presence of
MSGLs associated with soft-bedded ice streams, this work has
fundamental implications for the interpretation and modelling of
ice stream dynamics; in particular, ice stream basal motion on
soft sediment beds is accommodated by plastic deformation of a
thin layer of sediment and facilitated by continuous sediment
supply and an inefficient drainage system.

Methods
Field work and macroscale analyses. Detailed investigations were focussed on
ten sites located across the best-preserved part of the OPIS MSGL field, including
ridge crests (sites A, B, C, D, E, K and T; Fig. 1) and flanks (T, X, Y and Z; Fig. 1).
A trench 6- to 10-m-long, 2- to 3-m-wide and 3- to 5-m deep was opened at each
site (Fig. 1). Field work was carried out in three campaigns during the summers of
2011, 2012 and 2013, whereas laboratory analyses were conducted in 2013 and
2014. Macro-sedimentological analyses were carried out on a free face, usually
parallel to the MSGL long axis within each trench. The free face was initially
cleaned, with a stratigraphic log and an annotated sketch of the section made.
The face was then subdivided into 10-cm-thick sample sections at vertical intervals
of 20 cm working from the base of the modern soil to the bottom of the trench,
1.2–1.4 m below, giving 5–6 intervals per site and 59 in total. Clast a axis mac-
rofabric measurements were carried out on clasts with an elongation ratio of at
least 2:1 (a:b). All visible elongated clasts were measured, typically with an a axis
length range of 5–20 mm. Clasts were measured at each depth interval across an
exposed surface of about 30� 10 cm. The fabric measurements were undertaken by
multiple operators at each site, with usually one operator per sampled interval.
Samples were also collected for quantitative petrographic and granulometric
characterization, which was carried out at the sedimentological laboratory of the
Department of Geoscience, Aarhus University, Denmark. In addition, samples
were collected for micromorphology and X-ray tomography analyses.
Morphometric analysis of the MSGLs was carried out with ArcGIS on a 5-m
resolution digital terrain model, using standard techniques24.

Thin-section analysis. Samples for the thin sections were collected at all sampling
sites and depths with standard kubiena tins. Thin sections, prepared using standard
methods developed at the Centre for Micromorphology, Royal Holloway,
University of London, were taken within approximately ±5� of the MSGL long
axes. The cutting plane for thin sectioning was oriented parallel to the MSGL long
axis. The thin sections were examined using a standard Zeiss petrological micro-
scope. Detailed microstructural maps and quantitative data for the clast micro-
fabrics developed within the diamicton were obtained by first scanning the thin
sections at high resolution and then importing these into a computer graphics
package.

3D X-ray lCT analysis. This technique permits the imaging of the properties of
sediments at high resolution, recording variations in material density and atomic
weight, which are partitioned by the user into bulk phases, each representing a
different component of the sample43. In this study the focus has been on deriving
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3D microscale particle fabric data, an example of which can be seen in Fig. 6.
Samples for 3D X-ray mCT scanning were collected at all sampling sites and depths,
recovering undisturbed samples within 60-mm-long, 40-mm-diameter plastic
piping. Sealed samples were scanned on a Nikon X-Tek XT-H 225 Micro-CT
system at the Centre for Micromorphology, Queen Mary University of London,
with a voxel size of volumetric reconstructions of 62.5 mm. Three-dimensional
microfabric analysis was undertaken on all data sets. The heterogeneity of
glacigenic sediments analysed in this study offers particular challenges for the
identification and segmentation of particles representing mixed mineral
assemblages using mCT. Consequently, a machine-learning tool44,45 has been
applied to data sets (n¼ 53), enabling systematic, objective and robust
identification of all particles with b axis 4250 mm (Fig. 6a). Object-based analysis46

permits extraction of azimuth and dip of the a axis of all particles with an a:b axial
ratio 41.5:1 (Fig. 6c). The resulting data sets overcome the sample size weaknesses
associated with macroscale clast fabric analysis47, by generating large data
populations (typically two to three orders of magnitude greater than for clast
macrofabric) that can be partitioned and interrogated in detail (Fig. 6c).

GPR analysis. GPR acquisitions were carried out along and across the MSGLs
long axes, with profiles usually located near the trenches used for the sedimento-
logical analyses, using an IDS Radar System (www.ids-spa.it). Acquisitions were
made with a monostatic transmitting and receiving 40 MHz (nominal peak
frequency) unshielded antennae and 200 MHz shielded antennae. A total of 12
GPR profiles were acquired, some as long as 1,200 m, covering a total surveyed
length of 10,300 m; most profiles were repeated with both antennas. Data for the
40-MHz survey were captured in step collection mode with a step length of 1 m,
whereas a continuous mode acquisition was adopted for the 200 MHz survey, with
a step length of 0.25 m. Configuration for both data acquisitions provided 1,024
samples per scan in a time window of 200 ns. A standard processing sequence was
applied to the raw data to adjust GPR traces to a common time-zero position, filter
out noise and gain attenuated GPR signals. Specifically, a horizontal running
average filter was applied to remove the saturation effect caused by Tx–Rx direct
coupling. A subtraction of the mean trace to the data set (background removal) was
applied to filter out continuous flat reflections caused by multiple reflections
between the antenna, the operators and the ground surface. This filter was applied
to the data from the 40 MHz survey and limited to the first 10 ns, to avoid dis-
rupting reflections from continuous flat layers below the surface. Following a
spectral analysis of measured signals, a band-pass filter (21-38-110-156) was
applied, to remove undesired frequencies coming from instrumental and
environmental noise. To enhance the visibility of deeper reflections due to signal
attenuation, a gain function, increasing linearly with depth, was applied. The
availability of water table depths along the GPR profile (measured by augering)
allowed calibration and to convert the arrival times of reflected radar waves to
depth below surface. Calibrations based on each auger sample, with an
instrumental accuracy of ±15 cm, were consistent with each other and indicated
an EM wave velocity of B6 cm ns� 1, in line with the velocity usually defined for
this type of sediment in unsaturated conditions. This value was used for the
time-to-depth conversion for all 40 MHz radargrams. The existence, in the
200-MHz acquisitions, of some diffraction hyperbola allowed adoption of the
synthetic hyperbola method. An estimated EM wave velocity of about 8 cm ns� 1

was consistently found and applied to all 200 MHz profiles.
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