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ABSTRACT: Subsurface structures and especially the interactions between pores, roots and other 9 

organic matter elements have a strong impact on ecosystem functioning. Yet despite recent 10 

progress in the application of X-ray Computed Microtomography (µCT) to soil structure in 11 

agricultural science, applications to the more complex and heterogeneous substrates found in 12 

natural soils, specifically wetland soils, remain sparse. We apply X-ray µCT to a complex 13 

heterogenous soil and develop a robust segmentation method to quantify the pores, live roots and 14 

necromass. This approach significantly improves the detection of the organic matter elements, and 15 

gives us unprecedented detail and resolution in the segmentation of pores, live roots and necromass 16 

at a high spatial resolution (62.5 µm in this study). We identify several situations where pores and 17 
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organic matter interact in the soil, including the disconnected air spaces (aerenchyma) that run 18 

within the Spartina stem and roots, tubular-shaped pores left behind by decaying roots, and lateral 19 

roots deploying within structural fragilities in the sediment. The capacity of X-ray µCT to 20 

distinguish the connected live root system from the necromass opens possibilities for applications 21 

to determine key wetland soil functions such as soil cohesivity, soil nutrient exchanges and soil 22 

carbon dynamics. 23 

1. Introduction 24 
 25 

Soils and sediments, formed respectively from the in-situ weathering of a bedrock in association 26 

with biogeochemical processes (Lin, 2010) and from the layered deposition of imported particles 27 

(Dyer, 1995), both play a critical role for the ecosystems they support. They are a place of 28 

exchange of water, gases and other resources, while providing structural support and shelter for 29 

dwelling organisms (Rabot et al., 2018). The structure of these subsurface environments, defined 30 

as the three-dimensional spatial arrangement of solids regardless of chemical heterogeneity 31 

(Rabot et al., 2018; Xiong et al., 2019), results from the unique pedological (soil) and 32 

hydrodynamic (sediment) history of each habitat and is dynamic over multiple spatial and 33 

temporal scales. Because of this heterogeneity, structural properties (e.g. the measurable 34 

components of the soil structure, such as total porosity) are difficult to describe, yet doing so can 35 

greatly improve our understanding of ecosystem functions. Structure conditions 36 

geomorphological, pedological and ecological functioning (Corenblit et al., 2011; Lin, 2010; 37 

Rabot et al., 2018) and soil/sediment mechanics (Fonseca et al., 2013; Keller et al., 2013; 38 

Menzies et al., 2016; Phillips et al., 2018; Spagnolo et al., 2016). Structure notably controls the 39 

soils’ interactions with the surface by providing pathways for gas, water and solute fluxes (Ball, 40 
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2013; Dale et al., 2019; Gharedaghloo et al., 2018; Pedersen et al., 2015; Spencer et al., 2017; 41 

Swanson et al., 2017). Live roots also provide pathways of gas and nutrient exchanges, and play 42 

an important role in soil carbon dynamics (Bardgett et al., 2014; Blagodatsky & Smith, 2012; 43 

Smith et al., 2003). Due to these combined functions, structure exerts a critical control over 44 

soil/sediment fertility and agricultural potential (Naveed et al., 2016; Pöhlitz et al., 2018; Rogers 45 

et al., 2016).  46 

Because of the complexity of soil and sediment structure, its influence on ecosystem processes 47 

cannot be accurately predicted by one-dimensional parameters measured from traditional 48 

methods in the field or in the lab (Bradley & Morris, 1990). 3D X-ray Computed Tomography 49 

(CT) utilizes the penetrating capacity and attenuation of X-ray energy  to image the 3D internal 50 

structure and relative densities of materials (‘phases’) in a non-destructive manner (Cnudde & 51 

Boone, 2013). The technique, developed for medical applications in the 1970s, soon led to the 52 

higher resolution method X-ray Computed Microtomography (µCT) in the 1980s and to the 53 

study of microstructures in the geological and soil sciences (Ketcham and Carlson, 2001; 54 

Ketcham, 2005; Carlson, 2006; Taina et al., 2008; Cnudde and Boone, 2013). In soil sciences, 55 

the application of µCT has largely focused on agricultural soils (Helliwell et al., 2013; Keller et 56 

al., 2013; Menon et al., 2020; Mooney, 2002; Rogers & Benfey, 2015; Wildenschild & 57 

Sheppard, 2013). By contrast, lacustrine, estuarine, glacial, fluvial and marine sediments and 58 

associated soils typically represent multiple sediment sources, with mixing and superposition of 59 

different minerogenic and biogenic components with variable water content (Bendle et al., 2015; 60 

Dale et al., 2019; Griggs et al., 2015; Spagnolo et al., 2016; Spencer et al., 2017; Tarplee et al., 61 

2011; Voepel et al., 2019). This leads to significant textural and structural heterogeneities in 62 

samples, which challenges the data acquisition and analysis approaches developed for the 63 
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examination of more homogenous agricultural soils. Here, we have focused on heterogeneous, 64 

tidally flooded saltmarshes which retain both sedimentary (e.g. laminations) and pedalogical 65 

(e.g., vegetation) features and are commonly referred to as soils. Therefore, for simplicity, we 66 

use the term soils to include also unconsolidated and/or vegetated sediments deposited in aquatic 67 

environments with minerogenic and biogenic components, as they present characteristics of both 68 

sediments and soils. 69 

The acquisition and interpretation of µCT imagery of heterogeneous soils poses technical 70 

challenges. Firstly, such soils are often unconsolidated and saturated, and therefore easily 71 

disturbed, making recovery of ‘undisturbed’ samples very difficult, particularly at depth (Carr et 72 

al., 2020). Secondly, samples with significant physical heterogeneity are challenging to 73 

‘segment’ into relevant phases based on X-ray attenuation coefficient alone. The segmentation 74 

process is further complicated where there is a significant component of fine-grained sediments 75 

below the spatial resolution of the scanning system (e.g. <60µm in this study), whereby an 76 

individual voxel in the reconstructed 3D volume represents the mean attenuation coefficient of 77 

all elements present within. The intermediate grayscale value resulting from that mix of phases is 78 

called the partial volume effect (Ketcham & Carlson, 2001); the more heterogenous and fine-79 

grained the material, the harder it becomes to isolate key phases based on their grayscale values 80 

alone using global thresholding (Cnudde & Boone, 2013; Helliwell et al., 2013). Thirdly, most 81 

soils, particularly those formed in aquatic environments such as wetland soils, contain variable 82 

amounts of pore-water, meaning that the pore phase itself will be heterogeneous, with pores 83 

being air-filled, water-filled, and often a combination of these states. Vegetated environments 84 

such as coastal wetlands and saltmarshes also have significant heterogeneity in the belowground 85 

organic phase: the structure and 3D deployment of roots within the soil vary depending on the 86 
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vegetation type. Furthermore, the roots’ internal structure and density depend on their stage of 87 

decay, which complicates the differentiation of live roots, necromass and pore space.   88 

Significant advancements have been made to address the challenge of µCT image segmentation 89 

applied to heterogenous substrates, using more sophisticated  “local adaptive” image processing 90 

approaches such as gradient analysis and local-adaptive thresholding (Houston et al., 2013; 91 

Ngom et al., 2011; Pot et al., 2020; Schlüter et al., 2010; Tarplee et al., 2011). Automated root 92 

tracking algorithms have been developed to limit detection errors linked to the partial volume 93 

effect ; however, they only detect root systems connected to the surface by user-specified seed 94 

points, and might therefore miss buried root systems, which is a problem for soil carbon studies. 95 

Another approach is to detect phase elements based on their 3D shapes rather than their 96 

grayscale value, such as the tubular shape of roots using a Frangi filter (Frangi et al., 1998; Gao 97 

et al., 2019; Schulz et al., 2013). These recent root detection methods give promising results, but 98 

have so far been tested on sieved and repacked soils (Gao et al., 2019; Lucas et al., 2019), thus 99 

eliminating the structural complexity of in situ soil systems and limiting our insight into soil 100 

functions.  101 

This study presents and evaluates a workflow for segmenting pores and organic phases in 102 

complex heterogeneous, saturated sediment such as those found in coastal saltmarshes. Our 103 

segmentation approach allows the user to quantify the interactions and complexity of both pores 104 

and organic matter elements, and to distinguish the surface-connected live roots from the 105 

necromass in order to get a complete picture of material interactions in heterogeneous soils. We 106 

will discuss the potential applications of this approach to the study of key soil functions, such as 107 

soil-plant interactions, soil structural stability against eroding forces, and soil carbon dynamics. 108 
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 109 

2. Methods 110 
 111 

2.1.Study site 112 

The site chosen to conduct this study, a saltmarsh in Tillingham, Blackwater Estuary, Essex, UK, 113 

is representative of the heterogenous environments described above. Saltmarsh sediments are 114 

typically formed of mixed fine-grained sediments (clays to medium sands) and biogenic 115 

material, which makes them easily compacted and deformed during extraction. While 116 

saltmarshes have a low vegetation diversity compared to nearby non-saline environments 117 

(Teixeira et al., 2014), they are highly complex: tidal hydrology and strong vertical 118 

physicochemical gradients mean that water content, plant survival rates, root to shoot ratio and 119 

biomass accumulation vary in space and time (Moffett et al., 2012; Pezeshki & DeLaune, 2012). 120 

In addition, the saltmarsh subsurface structure depends on tidally controlled sediment deposition, 121 

but also on post-deposition processes such as autocompaction, bioturbation and root growth (De 122 

Battisti et al., 2019; French, 2006; Turner, 2004). These characteristics mean that saltmarsh soils 123 

are excellent candidates to test the robustness of our µCT segmentation methods on challenging, 124 

highly heterogeneous samples. 125 

An upper saltmarsh sediment core (15 cm depth and 15 cm diameter) was collected in July 2018. 126 

The vegetation cover at the sample location is dominated by Atriplex portulacoides (sea 127 

purslane), Puccinellia maritima and Spartina anglica (Ford et al., 2016). The sediment type is 128 

clay-dominated with a mean grain size of 69 µm, with 71% of its material below 63 µm. The 129 

sediment core was collected using the advanced trimming method initially developed by 130 

Hvorslev (1949): in brief, a plastic tube is placed on the soil surface; a trench is cut around the 131 
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tube, then carved into the shape of the core while the tube is lowered around the sample, 132 

applying gentle constant pressure to limit edge drag and avoid compression and torque rotation. 133 

Large roots are cut with scissors rather than a knife to avoid jostling, impact, twisting or other 134 

deformation to the sediment inside the core. Fine fibrous roots are sawed through with a serrated 135 

knife to avoid crushing and displacing the sediment around them. Further details and 136 

justifications for the sampling method are provided by Carr et al. (2020). After extraction, the 137 

core was stored upright in a cooling box filled with bubble wrap to minimize disturbance during 138 

transport, and stored at 4 ᵒC until required.  139 

The core was scanned using a Nikon Metrology XT H 225 X-ray Computed Tomography (µCT) 140 

system at 205kV and 46µA (9.4 W). The exposure time was 500ms at 36 dB gain. A Cu 1mm 141 

copper filter was used to reduce beam hardening artefacts. 4486 projections were acquired with 4 142 

frames per projection, for a scan time of 4.5 hours. The effective voxel size is 61.79µm. The 143 

voxel grid was then downscaled to 62.5µm during volume reconstruction. The total volume 144 

contains 2801*2783*2793 voxels. Figure 1 summarizes the various steps applied to the scanned 145 

volume. The different steps following scanning are detailed in the subsections below. 146 
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Figure 1. Data acquisition and processing workflow. The overall processing time from scanning 148 

to obtention of output parameters is about four days on a high performance computing suite. 149 

2.2.Reconstruction and signal processing 150 

The volume reconstruction step was undertaken using Nikon’s in-house software CT-Pro 3D 151 

(Ray, 2011): the software finds the center of rotation of the raw X-ray projections and converts 152 

the 2D radial slices into a 3D volumetric model defined by co-registered z-slices. The software 153 

also partially corrects the z-slices for beam hardening using a polynomial fit: this imaging 154 

artefact occurs when the X-ray beam becomes progressively attenuated as it penetrates from the 155 

edge to the center of the sample, leading to an apparent darkening of the center and a brightening 156 

of the edges (Ketcham & Carlson, 2001). This type of correction works when the overall matrix 157 

can reasonably be assumed to have a consistent density throughout the sample (Ketcham & 158 

Carlson, 2001), which should be the case for our clay-dominated material. Residual beam 159 

hardening can still affect the segmentation phase, even when invisible to the naked eye. To 160 

minimize its impact while removing edge disturbances during field sampling, an 8.75*8.75 cm 161 

square mask was selected in the center of each z-slice as an area of interest and applied 162 

throughout the volume (Fig. 1). A quadratic correction was then applied to the mean radial 163 

grayscale, the grayscale value averaged vertically across the core and plotted against the radial 164 

distance from the center (Fig. 2). 165 
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 166 

Figure 2. Correction of the residual beam hardening using a quadratic interpolation to remove 167 

the overall trend of darker values at the center of the sample. The density variations that remain 168 

in the detrended grayscale range correspond to actual density variations in the sample. 169 

Compared to other soils where the material density is consistent throughout, another challenge of 170 

clay-dominated coastal sediment is that they are highly compressible and may have rapid 171 

sedimentation rates due to material brought in by the tide (French, 2006), leading to 172 

autocompaction and to a downcore increase in the density of the inorganic phase. In our sample, 173 

a linear trend in grayscale values is found with an R2 value of 0.75 (Fig. 3); a lack of a similar 174 

trend in the PVC tube around the sample (not shown) confirms that this trend is due to 175 

autocompaction rather than an artefact of scanning.  In order to more consistently distinguish the 176 

mineral phase from the porosity and organic matter, this downcore trend is removed using a 177 

linear interpolation (Fig. 3). In practice, this means smoothing out the microporosity through the 178 

sample, which decreases with depth and affects the grayscale value of inorganic voxels due to 179 

the partial volume effect. A shift remains at the top few centimeters of the sample, where the 180 

trend is closer to a logarithmic fit in accordance with autocompaction patterns measured in silty 181 

saltmarsh clay (Bartholdy et al., 2010). However, applying a logarithmic correction to the 182 

topmost centimeters of the sample would excessively distort the grayscale value of the pores and 183 
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organic matter, which we can expect to find in greater quantity near the surface. This step 184 

improves the segmentation of pores and roots in compressible sediment and soils, which is the 185 

focus of this paper; however, analysis of the sediment phase should use the unmodified grayscale 186 

values.   187 

 188 
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Figure 3. Removal of the autocompaction effect on grayscales using a downcore linear fit. The 189 

correction factor at each z-slice is given by subtracting the linear fit from the uncorrected mean 190 

grayscale then adding the mean grayscale of the whole core. The method does not remove the 191 

logarithmic trend at the top of the sample so as to not excessively distort the grayscale values of 192 

the pores and organic matter. 193 

Finally, in order to reduce noise in the grayscale values while preserving the edges of the pores 194 

and organic features, different smoothing algorithms were tested using image filtering tools on 195 

Matlab, including Gaussian 3D filtering, 3D median filtering, guided image filtering and 196 

anisotropic diffusion (quadratic and exponential). The quadratic anisotropic diffusion tool 197 

imdiffusefilt was found to be best suited for filtering out noise without losing the signal: the 198 

method enhances the contrast between matrix and darker elements by using strong gradients in 199 

the image as barriers to the smoothing effect and thus preserving the edges (Kaestner et al., 200 

2006). 201 

2.3.Segmentation  202 

As stated in the introduction, µCT data applied to heterogeneous fine grained susbtrates are 203 

challenging to segment into their constituting phases because the partial volume effect blurs the 204 

limit between phases (Cnudde and Boone, 2013), and are better served by a combination of local 205 

adaptive thresholding methods. We first applied a method called hysteresis thresholding to 206 

distinguish the high-density inorganics from pores and organic matter. This method considers 207 

two thresholds: voxels below the low threshold have a high likelihood of being part of a pore or 208 

organic element and are systematically segmented, while voxels below the high threshold are 209 

only segmented if they are connected to the low threshold elements. A Frangi filter was then 210 
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used to enhance tubular shapes within the sample by applying the Matlab function 211 

FrangiFilter3D (Kroon, 2010). The Frangi method uses the orientation patterns (eigenvalues) of 212 

the Hessian to distinguish tubular structures from plate-like or blob-like structures (Frangi et al., 213 

1998). The output binary masks from hysteresis thresholding and Frangi tubular shape 214 

enhancement were combined, adopting a single threshold to separate pores from organic matter. 215 

Additional steps were then added to improve the signal to noise ratio, including morphological 216 

closing and the removal of partial volume effect artefacts, which can lead to the detection of 217 

organic “halos” around pore elements. The outer edges of organic matter elements were 218 

removed, then a dilation was performed to restore the remaining organic features to their original 219 

size (Fig. 4). Finally, in the same way that root elements can have a low contrast with the 220 

surrounding inorganic matrix but a characteristic tubular shape, thin cracks in the sediment can 221 

have an intermediate grayscale value due to the partial volume effect, but a visible jagged edge. 222 

To capture these remaining pore elements, we used a canny edge detection that detects both 223 

strong edges and weak edges connected to strong edges (Canny, 1986) (Fig. 5).  224 

 225 
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Figure 4. Schematic diagram illustrating partial volume effect reduction using contour removal 226 

(Matlab tool bwmorph3) followed by dilation (Matlab tool imdilate). Grey: Organic matter 227 

elements. Black: Pores. A: Initial segmentation of pores and organic matter elements; the partial 228 

volume effect causes organic “halos” to be detected around the pore elements. B: Remove edges 229 

of the organic phase to erase “halos” from partial volume effect. C: Dilate remaining organic 230 

matter elements back to their original size. 231 

 232 

Figure 5. Application of a Canny edge filter to refine pore detection in the sample. A: Original 233 

grayscale values. B: Pore segmentation without the Canny edge detection. C: Canny edge 234 

detection applied to find the edges of pore elements (Young, 2014); notice how the canny edges 235 

do not always connect with the features from B and add internal complexity to the pore phase. D: 236 

Morphological closing applied to reconnect the pore features to their edges (Matlab tool 237 

imclose). 238 
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In order to remove the noise detected by these various methods, we tested two noise thresholds: 239 

2,500 voxels (0.61 mm3) and 5,000 voxels (1.22 mm3) (FF2500 and FF5000 respectively). 240 

FF2500 contains 7,066 organic matter elements compared to 4,106 for FF5000 according to the 241 

Matlab volumetric image processing function bwconncomp; this will significantly increase the 242 

computational intensity of the quantification phase. Through visual comparison of the 3D 243 

volumes for FF5000 and FF2500, and quantitative comparison of the percentages of pore and 244 

organic fractions with depth, we tested whether this lower threshold significantly improves 245 

signal detection, or whether the additional ~3,000 elements detected are noise elements with 246 

little impact on the structure of the organic matter phase. We also tested whether the application 247 

of a Frangi filter, which takes several hours to run, significantly changes the detection of the live 248 

roots and necromass. To that end, a third version of the dataset NFF5000 was produced, using all 249 

the previous steps except for the Frangi filter, and using a noise removal threshold of 5,000 250 

voxels.   251 

Traditional methods for distinguishing live from dead roots are based on color, shape and 252 

plasticity ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-253 

1","itemData":{"DOI":"10.1155/2012/217402","author":[{"dropping-254 

particle":"","family":"Persson","given":"Hans A","non-dropping-particle":"","parse-255 

names":false,"suffix":""}],"container-title":"International Journal ofForestry 256 

Research","id":"ITEM-1","issued":{"date-parts":[["2012"]]},"title":"The High Input of Soil 257 

Organic Matter from Dead Tree Fine Roots into the Forest Soil","type":"article-258 

journal","volume":"2012"},"uris":["http://www.mendeley.com/documents/?uuid=4ccc3ad8-259 

7479-4f71-9f36-c206758f38fd"]}],"mendeley":{"formattedCitation":"(Persson, 260 

2012)","plainTextFormattedCitation":"(Persson, 261 
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2012)"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-262 

language/schema/raw/master/csl-citation.json"}(Persson, 2012). However, color and plasticity 263 

are not visible in µCT images, and while live roots tend to be larger and better branched than 264 

dead roots, densely grouped dead roots may be detected as one large, complex connected system; 265 

using these traditional definitions would therefore be prone to errors. Instead, in the binary masks 266 

NFF5000 and FF5000, we defined the live root system as all elements connected to the surface 267 

layer, approximated by the top 80 voxels (= 5mm) of the sample. The remaining, unconnected 268 

elements were classified as necromass. 269 

2.4.Quantification and ground referencing 270 

The 3D binary masks NFF5000, FF5000 and FF2500 were used for a detailed topological 271 

analysis of the pores and organic matter elements using the automated software plugin BoneJ for 272 

ImageJ (Doube et al., 2010; Schindelin et al., 2012). Morphological parameters (Table 2) were 273 

extracted to determine how the different segmentation approaches affect the volume, length and 274 

structural complexity of the pore and organic phases. 275 

Table 1. List of morphological parameters considered.   276 

Parameter Unit Definition 

Total phase 
fraction 

% Fraction of the number of voxels belonging to a phase by the total 
number of voxels in each Z-slice and represented as depth profiles. 
The surface of the sample is automatically detected as the Z-slice 
wherein the proportion of matrix to void, segmented using an Otsu 
global thresholding, first reaches 75%. 

Total volume mm3 Total volume of the studied phase 

Total skeleton 
length 

mm Total length of the skeleton, obtained by shrinking a volume to a 1-
voxel thick median structure, composed of nodes and branches that 
preserve the topological complexity of the initial volume. 
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Connectedness % Volume of the largest connected element divided by the total volume 
of the studied phase 

Maximum 
Euler-Poincare 
characteristic 

No 
unit 

Topological invariant that describes the shape or structure of a 
topological space. In BoneJ, it is calculated as the number of objects 
minus the number of handles (hole that goes through an object) plus 
the number of cavities (holes enclosed within the object). It is used 
as a proxy for complexity and connectedness: negative values 
correspond to a well-connected complex system. 
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The 3D architecture of the sample was visualized using the volume rendering software Drishti 278 

(Limaye, 2012). In order to compare this 3D rendering with the actual sample, and check that the 279 

root and pore elements visible to the naked eye are correctly identified, the core was cut open 280 

with a serrated knife along a pre-marked section one day after scanning. Using a prior marking 281 

(either an incision in the PVC tube or a piece of metal, both of which will be visible in the X-ray 282 

attenuation coefficients), the equivalent vertical section was located in the segmented volume 283 

and overlain with a high-resolution photograph of the cut-off face. While there is no infallible 284 

way of cutting open a core without causing disturbance, the cohesive nature of the clay means 285 

that the largest pore structures and the position of the roots are likely to be preserved. 286 

3. Results 287 
 288 

3.1.Quality control of the segmentation method 289 

Observation of the segmented horizontal slices provides insight into the different types of pores 290 

and organic matter elements detected by our segmentation method (Fig. 6). The larger organic 291 

elements have a complex inner structure with a hollow center and multiple other internal voids: 292 

these air spaces within roots and stems (aerenchyma) are an adaptation strategy of coastal 293 

wetland plants such as Spartina to anoxic conditions (Mitsch & Gosselink, 1986). The smaller, 294 
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tubular root elements visible in the Z-slice correspond either to lateral roots branching off from 295 

the main Spartina root system, or to the roots of other plant species present on site such as 296 

Atriplex or Puccinellia. The porosity elements appear either as tubular features, corresponding to 297 

inner voids within roots and voids left behind by decaying roots, or as patches with no organic 298 

origin.   299 

 300 

Figure 6. Segmentation example, showing the pore phase in red and the organic matter phase in 301 

green overlain over the remaining inorganic phase. 302 

Adding the Frangi filter had no visible effect on the detection of pore elements, but considerably 303 

increased the size, extent and complexity of the organic matter phase (Fig. 7). At NFF5000 the 304 

organic matter phase is limited to areas connected to large pores: because of the hysteresis 305 

thresholding applied, medium grayscale voxels are only segmented if they are connected to a low 306 

grayscale voxel. Therefore the Frangi filter is particularly efficient at detecting thin unconnected 307 

root elements with no internal voids. By contrast, changing the noise removal threshold from 308 
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5,000 to 2,500 voxels had little visible impact on the 3D volumes of either the pore or the 309 

organic matter phases (Fig. 7).   310 

 311 
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Figure 7. Segmented volume visualization using different segmentation methods and noise 312 

thresholds. Grey = pores; green = organic matter; brown = inorganic matter. Volumes obtained 313 

using Drishti (Limaye, 2012).  314 

Ground referencing shows that the segmentation method proposed successfully distinguishes 315 

areas dominated by roots from areas dominated by pores (Fig. 8). On the high resolution 316 

photograph, the top half of the cut face (0-6 cm) is pockmarked by small roots, though individual 317 

roots are difficult to visualize except for a few of the larger Spartina roots. The section between 318 

6-12 cm contains more and larger porosity elements; the structure and distribution of these pores 319 

are also similar to what is observed on the segmented volume.  320 

 321 
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Figure 8. Ground referencing using the segmented volume overlain over a photograph of the 322 

cut-off face of the core. On the segmented volume: brown = inorganic matter; grey = pores; 323 

green = organic matter. Volume obtained using Drishti. 324 

3.2.Quantification and distinction between live roots and necromass 325 

The segmented pore phase can be separated into three regions: 0-6 cm, 6-10 cm and 10-14 cm. 326 

The first region at 0-6 cm is characterized by a low pore fraction and bulk volume, a low 327 

connectivity, but a peak in both the pores and organic matter’ skeleton length (Fig. 9-10). This is 328 

due to the influence of the Spartina stem and roots, which contain several transport pathways and 329 

unconnected hollow chambers that add to the length of the overall pore system. The second 330 

region at 6-10 cm sees a peak in the pore fraction (Fig. 9) and in the connectedness and 331 

complexity of the pore system (Fig. 10). This region coincides with the branching off of the main 332 

Spartina root into lateral roots at about 8 cm, and with a horizontal crack visible in the rendered 333 

volume (Fig. 7). The root system may have preferentially developed within an area of structural 334 

fragility and lesser density, as has been observed in previous studies (Lucas et al., 2019). The 335 

third region sees a slight decrease in the bulk volume, connectedness and complexity of the pore 336 

system (Fig. 9-10). 337 

The organic matter phase is dense throughout the 15 cm sample (Fig. 7), which is to be expected 338 

as we are still within the root zone of a biologically diverse upper saltmarsh: the saltmarsh root 339 

zone extends from 15 to 50 cm depending on plant species and environmental conditions (De 340 

Baets et al., 2008). The organic phase is denser in the first 5 centimeters then starts to decrease 341 

downcore (Fig. 9). Adding the Frangi filter leads to the detection of a larger and more complex 342 

organic matter phase overall, with a higher fraction, bulk volume and total skeleton length 343 
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detected at all depths (Fig. 9-10). Adding the Frangi filter also highlights the downcore decrease 344 

of the organic fraction (Fig. 9), notably by detecting a higher number of elements not connected 345 

to the main root system: in the first 5 cm of the sample, 25% of all segmented elements are 346 

connected to the main root feature in FF5000 and FF2500, against 50% for NFF5000 (Fig. 10).  347 

 348 

Figure 9. Depth profiles of the fractions of pores and of organic matter within the segmented 349 

volume. FF: Frangi filter applied; NFF: No Frangi filter applied. T=5000: Noise threshold set at 350 

5,000 voxels; T=2,500: Noise threshold set at 2,500 voxels. 351 



 1 

 352 

Figure 10. Topological analysis of pores and organic matter in 2-cm sections using BoneJ. () 353 

stands for no unit. 354 

Figure 11 shows the potential of the Frangi filter to detect the necromass as well as the surface-355 

connected live root system. The live root phase highlights one large Spartina root that branches 356 

out into smaller horizontal roots at about 80 mm depth. The live root system detected using the 357 

Frangi filter is larger and more complex, with a greater bulk volume and number of branches in 358 

the skeleton, and reaches 2.5cm deeper. A number of thin lateral roots also becomes apparent. 359 

Without the Frangi filter, by contrast, the live root system appears fragmented, and very little of 360 

the necromass is detected. 361 
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 362 

Figure 11. Effect of the Frangi filter on the extent, bulk volume, number of branches and root 363 

system depth of surface-connected “live” roots (green) and on the bulk volume of the necromass 364 

(dark red). The noise threshold is 5000 voxels. 365 

4. Discussion 366 

The use of µCT in soil sciences allows us to visualize and quantify crucial structures and 367 

processes in the subsurface environment, but this technology presents ongoing challenges: 368 

sampling procedures to minimize sediment disturbance remain time-consuming, access to 369 

specialist X-ray µCT scanning equipment is still not widespread in the soil science community, 370 

and the large datasets can create issues with processing and data storage. Finally, until standard 371 
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segmentation methods are widely agreed upon, interpretation of the µCT volumes will require 372 

specific expertise in 3D signal processing and image analysis. Therefore multidisciplinary 373 

methodology papers are necessary to disseminate novel image processing techniques and 374 

encourage the wider use of µCT by soil scientists.  375 

The approach outlined in this paper has multiple potential applications for soil science. The 376 

three-phase segmentation (pores, organic matter elements, sediment matrix) allows the study of 377 

pore-root interactions, something which has so far only been attempted in simplified conditions 378 

such as sieved and repacked soil columns (Lucas et al., 2019). These interactions are expected to 379 

play an important role in natural soil structure because of the high trait plasticity of roots: their 380 

growth depends on the distribution of water, nutrients and of the areas of least resistance marked 381 

by the porosity elements (Bardgett et al., 2014). At a higher resolution, the method could be used 382 

to study the internal structure of plants and roots to visualize internal air spaces and infer nutrient 383 

and fluid exchanges between the surface and subsurface: the presence of aerenchyma has been an 384 

obstacle in previous segmentation attempts using a visual tracking algorithm .  In addition, the 385 

capacity of our method to distinguish live roots from the necromass opens the door for µCT 386 

applications to the study of soil structural stability. Indeed, roots can have either a weakening or 387 

a stabilizing effect on the soil depending on their structure, connectedness and state of decay 388 

(Brooks et al., 2020). Coarse roots can dislodge sediment and contribute to cliff-face erosion 389 

(Feagin et al., 2009), while thinner and denser root meshes hold the soil together and provide a 390 

physical barrier between the sediment and the water (Brooks et al., 2020; Gedan et al., 2011). 391 

Decaying unconnected roots also contribute to making the soil less dense and more cohesive 392 

(Brooks et al., 2020; Feagin et al., 2009).  393 
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Finally, the proposed method opens the door to the study of soil carbon dynamics and 394 

greenhouse gas exchanges in various types of soils. The potential of µCT to model gas 395 

exchanges within 3D macropore structures is already known (van Marcke et al., 2010). Our 396 

approach can further the state of knowledge by providing a robust way of estimating root 397 

biomass. This should improve the estimation of carbon stocks since root systems and particularly 398 

the fine-root mass contribute disproportionately to soil carbon sequestration compared to the 399 

aboveground part of the plant (He et al., 2018). Root biomass estimation still lacks a 400 

methodological consensus (Addo-Danso et al., 2016), and traditional methods of belowground 401 

biomass estimation rely on labor-intensive and time-consuming destructive sampling protocols, 402 

as highlighted by Vialiale (2015): “This project became legendary as the most tedious task in our 403 

labs, tolerated only by everyone taking turns at the detailed and nearly endless staining, sorting, 404 

drying, and weighing protocols”. Furthermore, distinguishing live roots from necromass is 405 

recommended when estimating carbon sequestration potential in the soil (Adame et al., 2017). 406 

The proposed method, based on the connection of the root system to the surface, comes with its 407 

own limitations: the minimal size of roots detected depends on the scanning resolution chosen, 408 

and live root systems connected to shoots outside the perimeter of the core will be detected as 409 

necromass; prior knowledge of the live root thickness, internal structure and architecture is 410 

recommended to choose appropriate scanning parameters and to interpret the µCT volumes. 411 

Nevertheless, owing to the capacity of µCT to rapidly and non-destructively segment large and 412 

complex root systems, the method outlined in this paper could play a crucial role in studies of 413 

soil carbon dynamics. 414 
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5. Conclusion 415 

This study applied X-ray Computed Microtomography to a highly heterogenous saltmarsh 416 

sediment core. We developed a hybrid segmentation method that combines local adaptive 417 

thresholding and shape detection to visualize and quantify the 3D distribution of pores, live roots 418 

and necromass. The segmented volumes of roots and pores closely match the structures observed 419 

on high-resolution photographs of the core taken along a cut-off face. We find that the use of a 420 

Frangi filter for tubular structure enhancement is particularly efficient to highlight fine root 421 

elements that have a low density contrast with the mineral phase. Compared with region-growth 422 

segmentation methods, which only segment objects connected to pre-selected seed points, this 423 

method is more versatile because it requires no prior knowledge of the core content, and because 424 

it distinguishes between the live root system and the necromass. Our analysis of the pore and 425 

organic matter elements’ volume and structure shows clear interactions between the two phases: 426 

root decay is a source of porosity in the sediment, while the presence of areas of lower density 427 

with a higher concentration of pores determine where roots are able to develop. Our application 428 

of X-ray µCT has the potential to provide unprecedented knowledge of the 3D organisation of 429 

pores and organic matter within heterogeneous soils, and to explore key ecosystem functioning 430 

such as erodibility and carbon sequestration dynamics. 431 
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